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1 Introduction

This appendix contains proofs, algebraic derivations, detailed description of economet-

ric methods and additional empirical results. If the reader is primarily interested in the

derivations and empirical results, the description of the computation algorithms can
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be skipped. Equations in this document are numbered with the suffix ‘S–’. Equations

without suffix refer to the main paper.

We will make repeated use of the following references, which we abbreviate as

indicated for brevity: MPvic stands for Magdalinos and Phillips (2009a) , MPet stands

for Magdalinos and Phillips (2009b) and KMS stands for Kostakis, Magdalinos and

Stamatogiannis (2015) .

2 Overview of notations

We list here all the notations. The model is

∆Y1 = ∆Y2b12 +X1δ1 + ε1

∆Y2 = X2ψ2 + v2

with X2 = [Y2 : X2 : ε1] , where Y2 contains the stacked elements of Y2,t−1. The AR

statistic for testing H0 : b12 = b0
12 is the square of the t-test of δz = 0 in

∆Y1 −∆Y2b
0
12 = X1δ1 + zδZ + ε0

1

with instruments Z1 = [z : X1] . Under H0, the residual ε̂1 is ε̂1 = MX1 (∆Y1 −∆Y2b12).

We denote

X̂2 = [Y2 : X2 : ε̂1]

with instruments Ẑ2 = [z : X2 : ε̂1] and v̂2 = ∆Y2− X̂2ψ̂2 where ψ̂2 is the IV estimator.

When necessary, we let

X̂21 = [X2 : ε̂1] .

3 Proofs of results in the paper

The proofs use extensively the results of MPvic and KMS. These authors consider

sequences α2 = cT a for c ≤ 0 and a ∈ [0, 1] . We prove in Section 3.1 that their

theorems can be generalized to all sequences such that Tα2 → [−∞, 0] provided that

the innovations satisfy a slightly more restrictive Assumption LP* that holds under

Assumption A made in our paper. Our setting presents some simplifications compared

to those of MPvic and KMS. Specifically, the generated instrument zt is predetermined
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as opposed to the case considered by MPvic where it is not. Hence, cov (zt, ε1t) = 0

and there is no need to estimate this covariance, so the condition b > 2/3 in MPvic is

not required.

3.1 Extending IVX to general sequences of parameters

In the following, we use the results of the papers by MPvic, Giraitis and Phillips (2006,

GP06, and 2012, GP12). We consider, for the processes with x0 = op

(√
T

1−TcT

)
, i.e.

x0 = op

(
|cT |−1/2

∧T
1/2
)
, where ∧ denotes the minimum (and ∨ the maximum). For

readability and comparison with MPvic, we use the following notation in this section

– and corresponding proofs – only:

yt = θxt + ut,

xt = ρTxt−1 + vt,

z̃t = ρZ z̃t−1 + ∆xt

zt = ρZzt−1 + vt,

(S–1)

where as in MPvic,

ρZ = 1 + czT
−b, b ∈ (1/2, 1) , cz < 0. (S–2)

Notice that in the equation for yt, we retain the regressor xt as in MPvic, whereas

we use its first lag in our model. We keep this in order to show that the results of

can be generalized. It is then easy to provide the required results by appropriate

definition of the error process vt and of x0. Assumption b ∈ (1/2, 1) is found in MPvic:

it is required in the proofs of Proposition A2, Lemma 3.5 and Lemma 3.6, where ut is

expressed according to the Beveridge-Nelson decomposition of Phillips and Solo (1992).

When ut is i.i.d, as in KMS, the condition b > 1/2 is no longer required.

We extend below the results of MPvic, in the univariate case, to cT = ρT −1 admit-

ting a general formulation as in the following assumption which replaces Assumption

N of MPvic (which we refer to as MPvic-Assumption N):

Assumption N*: The coefficient cT = ρT − 1 ∈ (−2, 0] satisfies as T → ∞ one of

the three assumptions
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(i) TcT → 0;

(ii) TcT → c < 0;

(iii) TcT → −∞.
Assumption N* is found in GP06 and GP12 who make a different assumption about

the dynamics of vt from that which is found in MPvic. Our assumption on the dynamics

of vt combines those of MPvic and GP12 so the results of both articles hold (and the

assumption of KMS when cT is constant also holds):

Assumption LP*: (ut, vt)
′ = F (L) εt =

∑∞
j=0 fjεt−j where εt is an i.i.d sequence

with E (εt) = 0, E (εtε
′
t) = Σ, E

(
‖εt‖4) < ∞, F (1) has full rank, and, for k ≥ 1,∑∞

j=k |fj| ≤ k−1−κ, for κ > 2.

Let F (L) = (F ′u (L) , F ′v (L))′ and the long run covariance

Ω =

[
Ωuu Ωuv

Ωvu Ωvv

]
= F (1) ΣF (1)′ .

We also let Λ0
uv =

∑∞
j=0E (utvt−j) , Λuv =

∑∞
j=1E (utvt−j) with corresponding matrix

Λ that conforms to Ω.

We provide below the equivalent lemmas and theorems to MPvic under the As-

sumptions N* and LP* above. The only modification in the formulation of the lem-

mas and theorems concerns Assumption N*(iii) which replaces MPvic-Assumption

N(iii) . Under the former, the instrument is less persistent than the regressor when

ρT − 1 = o (ρZ − 1), i.e., instead of b < a in MPvic-Assumption N(iii) , we now have

cT = o
(
T−b

)
, (S–3)

and expression (MPvic-13) rewrites z̃t = zt + cTψTt.

We now state the required lemmas of MPvic under the new assumptions, keeping

the same number as in MPvic to show the relation under the new assumptions, but

adding a start (*). Hence Lemma 3.1 in MPvic becomes Lemma 1* here.

Lemma 1* Consider the model given by (S–1)-(S–2) under Assumptions N* and LP*

with cT = o
(
T−b

)
, the following approximations hold as T →∞ :

(i) T−
1+b
2

∑T
t=1 utz̃t = T−

1+b
2

∑T
t=1 utzt + op (1) ;

(ii) T−(1+b)
∑T

t=1 xtz̃t = T−(1+b)
∑T

t=1 xtzt − T−1cT cz
∑T

t=1 x
2
t + op (1)

(iii) T−(1+b)
∑T

t=1 z̃
2
t = T−(1+b)

∑T
t=1 z

2
t + op (1) .

Lemma 2* Consider the model given by (S–1)-(S–2) under Assumptions N* and
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LP*. The martingale array UT (s) = T−
1+b
2

∑bTsc
t=1 [zt−1Fu (1) εt] satisfies UT (s)⇒ U (s)

where Us is a Brownian motion with variance − 1
2cz

ΩuuΩvv and independent of Bv

(Bv (s) defined as limit of T−1/2
∑bTsc

t=1 vt). Joint convergence in distribution of UT (1) ,

T−1
∑T

t=1 xt−1εt and T−1cT
∑T

t=1 x
2
t−1 also applies.

Lemma 5* Consider the model given by (S–1)-(S–2) under Assumptions N*(iii) and

LP* with c−1
T = o

(
T b
)

and b ∈ (1/2, 1) , then the following approximations hold as

T →∞ :

(i)
√
−cT
T

∑T
t=1 utz̃t =

√
−cT
T

∑T
t=1 utxt + op (1) ;

(ii) cT
T

∑T
t=1 xtz̃t = cT

T

∑T
t=1 x

2
t + op (1) ;

(iii) cT
T

∑T
t=1 z̃

2
t = cT

T

∑T
t=1 x

2
t + op (1) .

Lemma 6* Consider the model given by (S–1)-(S–2) under Assumptions N*(iii) and

LP* where κ1 < T bcT < κ0, for some κ1 < κ0 < 0, and b ∈ (1/2, 1) . Then the following

approximations hold as T →∞ :

(i)
√
− (cz + T bcT )T−

1+b
2

∑T
t=1 (utz̃t − Λ0

uv)⇒ N
(
0, 1

2
ΩvvΩuu

)
;

(ii) −
(
cz + T bcT

)
T−(1+b)

∑T
t=1 xtz̃t

p→ 1
2
Ωvv;

(iii) −
(
cz + T bcT

)
T−(1+b)

∑T
t=1 z̃

2
t

p→ 1
2
Ωvv.

Proofs of the lemmas are provided in Section 3.7.

3.2 Proof of Lemma P

The proofs for items (i) , (ii) and (iii) follow from the result of MPvic where we have

established the equivalent lemmas for general sequences cT which becomes α2 in our

context. For items (iv) , we notice that the proof of Lemma 5* goes through with ∆Yt−i

i = 1, ...,m− 1 in place of ut, because the part of Assumption LP∗ that requires F (1)

to be of full rank is not needed in the proof of Lemma 5*. It also covers the case of

over differencing where α2 is constant. Joint convergence of (i) , (ii) and (iii) follows

from Lemma 2*.

Parts (v) and (vi) follow from GP12, Lemma 2.1 and Theorem 2.2, who showed

that
1

T

T∑
t=1

Y2,t−1Xit
p→ ΣY2Xi , i = 1, 2,

where ΣY2Xi is nonstochastic, and√
−α2 ∨ T−1

T

T∑
t=1

Y2,t−1ε1t ⇒ N
(

0,
ω

2
σ2
ε1

)
,
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and the fact that κT/T = o
(
−α2∨T−1

T

)
= o

(−α2

T
∨ T−2

)
.

3.3 Proof of Proposition 4

The first equation is a linear IV regression, so the estimator of δ1 solves the equation

X ′1Z1V̂
−1
f1
Z ′1

(
∆Y1 −∆Y2b12 −X1δ̂1

)
= 0. Conditional homoskedasticity implies that

we can set V̂f proportional to Z ′1Z1, so δ̂1 is 2SLS

δ̂1 = (X ′1PZ1X1)
−1
X ′1PZ1 (∆Y1 −∆Y2b12) .

Since Z1 = (z,X1) , this reduces to

δ̂1 = (X ′1X1)
−1
X ′1 (∆Y1 −∆Y2b12) ,

i.e., simply OLS of ∆Y1−∆Y2b12 on the exogenous regressors X1. The estimator of σ2
ε1

is simply T−1
∑T

t=1 ε̂
2
1t, where ε̂1t = ∆Y1t −∆Y2tb12 −X ′1tδ̂1. So,

ψ̂1 =

(
δ̂1

σ̂2
ε1

)
=

(
(X ′1X1)−1X ′1 (∆Y1 −∆Y2b12)

T−1
∑T

t=1 ε̂
2
1t

)
. (S–4)

Now, let us turn to equation (3). For convenience, define the ‘generated regressors’

X2t (θ1) = (Y2,t−1, X
′
2t, h1t (θ1))

′

and the corresponding ‘generated instruments’

Z2t (θ1) = (Z ′2t, h1t (θ1))
′
= (zt, X

′
2t, h1t (θ1))

′
.

In what follows, we will omit the dependence of X2t and Z2t on θ1 for brevity, and

we will use the shorthand notation X̂2t = X2t

(
b12, ψ̂1

)
= (Y2,t−1, X

′
2t, ε̂1t)

′ , and sim-

ilarly for Ẑ2t. Because the second equation is a just-identified linear IV regression in

the (generated) regressors/instruments, the estimator ψ̂2 solves F2T

(
b12, ψ̂1, ψ̂2

)
= 0,

which yields

ψ̂2 =
(
Ẑ ′2X̂2

)−1

Ẑ ′2∆Y2. (S–5)
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Subtracting ψ2 and substituting for ∆Y2 yields

ψ̂2 − ψ2 =
(
Ẑ ′2X̂2

)−1

Ẑ ′2v2 +
(
Ẑ ′2X̂2

)−1

Ẑ ′2X1

(
δ̂1 − δ1

)
d21. (S–6)

Collecting terms yields

ψ̂ − ψ =


(X ′1X1)−1X ′1ε1

T−1ε̂′1ε̂1 − σ2
ε1(

Ẑ ′2X̂2

)−1

Ẑ ′2v2 +
(
Ẑ ′2X̂2

)−1

Ẑ ′2PX1ε1d21

 .

Next, we need to get the estimator of the variance of ψ̂. First, note that Ṽf (b12),

the estimator of E
[
ft (θ) ft (θ)′

]
, is block diagonal if we impose the orthogonality of

the errors ε1t, v2t, because, at the true value of θ, E
(
f1t (θ) f2t (θ)′

)
= E (Z1tε1tv2tZ

′
2t) ,

and Z1t, Z2t are predetermined, so E (ε1tv2t|Z1t, Z2t) = 0. Hence,

Ṽf (b12) =

(
Ṽf1 (b12) 0

0 Ṽf2 (b12)

)
.

Next,

Ṽf1 (b12) =
1

T 2

(
Z ′1Z1σ̂

2
ε1

0

0 T$̂

)
where $̂ is an estimator of var

(
σ̂2
ε1

)
. Under the maintained assumptions, a consistent

estimator is given by $̂ = T−1
∑T

t=1

(
ε̂2

1t − σ̂2
ε1

)2
. If we assume that var (ε̂2

1t) = 2σ4
ε1
,

which holds under Gaussianity, then we can use $̂ = 2σ̂4
ε1
, as in Blanchard and Quah

(1989) and Gaĺı (1999). Finally,

V̂f2 (b12) =
1

T 2
Ẑ ′2Ẑ2σ̂

2
v2
, σ̂2

v2
= T−1v̂′2v̂2, v̂2 = ∆Y2 − X̂2ψ̂2.

Next, the Jacobian of the moment conditions is given by

ĴT (b12) =
∂FT (θ)

∂ψ′

∣∣∣∣
θ=(b12

ψ̂
)

=
1

T

 −Z
′
1X1 0 0

0 −T 0

Ẑ ′2X1d21 0 −Ẑ ′2X̂2

 .
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Hence,

ĴT (b12)′ Ṽf (b12)−1 ĴT (b12)

=

 −Z
′
1X1 0 0

0 −T 0

Ẑ ′2X1d21 0 −Ẑ ′2X̂2


′

(Z ′1Z1)−1 σ̂−2
ε1

0 0

0 T−1$̂−1 0

0 0
(
Ẑ ′2Ẑ2

)−1

σ̂−2
v2



×

 −Z
′
1X1 0 0

0 −T 0

Ẑ ′2X1d21 0 −Ẑ ′2X̂2



=

X
′
1PZ1X1σ̂

−2
ε1

+X ′1PẐ2
X1d

2
21σ̂
−2
v2

0 d21X
′
1PẐ2

X̂2σ̂
−2
v2

0 T$̂−1 0

d21X̂
′
2PẐ2

X1σ̂
−2
v2

0 X̂ ′2PẐ2
X̂2σ̂

−2
v2

 .

Using the partitioned inverse formula and simplifying yields the expression for V̂ψ̂ =[
ĴT (b12)′ Ṽf (b12)−1 ĴT (b12)

]−1

, with

V̂ψ̂,11 = (X ′1X1)
−1
σ̂2
ε1

V̂ψ̂,12 = 0

V̂ψ̂,13 = − (X ′1X1)
−1
X ′1Ẑ2

(
X̂ ′2Ẑ2

)−1

σ̂2
ε1
d21

V̂ψ̂,22 =
$̂

T

V̂ψ̂,23 = 0

V̂ψ̂,33 =
(
X̂ ′2PẐ2

X̂2

)−1

σ̂2
v2

+
(
Ẑ ′2X̂2

)−1

Ẑ ′2PX1Ẑ2

(
X̂ ′2Ẑ2

)−1

σ̂2
ε1
d2

21.

Rewriting the last term yields the expression in the proposition. Now, let

Ĉψ̂ =


(X ′1X1)1/2 σ̂−1

ε1
0 −d21X

′
1Ẑ2C

′−1

Ẑ′2Ẑ2
σ̂−1
v2

0 T 1/2$̂−1/2 0

0 0 X̂ ′2Ẑ2C
′−1

Ẑ′2Ẑ2
σ̂−1
v2

 .

It can be easily verified that Ĉψ̂Ĉ
′
ψ̂

= V̂ψ̂ (ϑ)−1 .
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So,

ξ̂2 = CV̂ −1

ψ̂

(
ψ̂ − ψ

)
=


(X ′1X1)−1/2X ′1ε1σ̂

−1
ε1

$̂−1/2
(
σ̂2
ε1
− σ2

ε1

)
C−1

Ẑ′2Ẑ2
Ẑ ′2v2σ̂

−1
v2

 .

Finally, we turn to the derivation of ξ̂1. The moment vector F̂T (ϑ) , with ϑ = b12,

is

F̂T (b12) =

(
F̂1T (b12)

F̂2T (b12)

)
,

where

F̂1T (b12) =
1

T

(
Z ′1
[
∆Y1 − b12∆Y2 −X1 (X ′1X1)−1X ′1 (∆Y1 − b12∆Y2)

]
ε̂′1ε̂1 − T σ̂2

ε1

)

=
1

T

(
Z ′1MX1 (∆Y1 − b12∆Y2)

0

)
=

1

T

(
z′MX1 (∆Y1 − b12∆Y2)

0(colX1+1)×1

)
,

and

F̂2T (b12) =
1

T
Ẑ ′2

(
∆Y2 − X̂2ψ̂2

)
=

1

T
Ẑ ′2

[
I − X̂2

(
Ẑ ′2X̂2

)−1

Ẑ ′2

]
∆Y2 = 0.

Now,

ŜT (b12) = F̂T (b12)′ Ṽf (b12)−1 F̂T (b12)

=
(∆Y1 − b12∆Y2)′MX1PZ1MX1 (∆Y1 − b12∆Y2)

σ̂2
ε1

=
(∆Y1 − b12∆Y2)′ PMX1

z (∆Y1 − b12∆Y2)

σ̂2
ε1

= ξ̂′1ξ̂1,

where

ξ̂1 = (z′MX1z)
−1/2

σ̂−1
ε1
z′MX1 (∆Y1 − b12∆Y2)

= (z′MX1z)
−1/2

σ̂−1
ε1
z′MX1ε1,

which is a scalar in the case n = 2.
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3.4 Proof of Proposition 5

(i) ψ̃ = ψ̂ follows from linearity, just-identification and conditional homoskedasticity,

which implies that the IV estimator of ψ does not depend on any weighting matrix, as

seen in the proof of Proposition 4. For (ii), take ψ̂1 =
(
δ̂1
σ̂2
ε1

)
. Then,

δ̂1 = δ1 +

(
X ′1X1

T

)−1
X ′1ε1

T
= δ1 +Op (1) op (1)

p→ δ1,

since X1 consists of lags of ∆Yt and ε1 is an innovation process. So,

σ̂2
ε1

= T−1

T∑
t=1

ε̂2
1t = T−1

T∑
t=1

ε2
1t + op (1)

p→ σ2
ε1
,

by Assumption A and the law of large numbers. Turning to ψ̂2, from (S–6) and the

consistency of ψ̂1, we have

ψ̂2 − ψ2 =
(
Z
′
2X2

)−1

Z
′
2v2 + op (1) . (S–7)

Next, let

DT =

(√
κT 0

0 T−1/2Ipψ2−1

)
, κT =

−
(
cz + T bα2

)
T 1+b

, (S–8)

so that

DTZ
′
2X2DT =

 κT z
′Y2

√
κT
T
z′X2

√
κT
T
z′ε1√

κT
T
X ′2Y2 T−1X ′2X2 T−1X ′2ε1√

κT
T
ε′1Y2 T−1ε′1X2 T−1ε′1ε1

 . (S–9)

If Tα2 → −∞, then from Lemma P we have

DTZ
′
2X2DT =

ω + op (1) Op (TκT ) op (1)

Op (TκT ) ΣX2X2 + op (1) op (1)

op (1) op (1) σ2
ε1

+ op (1)

 ,

where ΣX2X2 = limT→∞E (X2tX
′
2t) . More specifically, if α2 → 0, i.e., TκT → 0, then

DTZ
′
2X2DT

p→

ω 0 0

0 ΣX2X2 0

0 0 σ2
ε1

 . (S–10)
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If α2 < 0 is fixed, i.e., TκT → −α2, then

DTZ
′
2X2DT

p→

(
E
((√−α2Y2,t−1

X2,t

)(√−α2Y2,t−1

X2,t

)′)
0

0 σ2
ε1

)
. (S–11)

To see this, note that if α2 < 0 is fixed, then T−1z′X1 = T−1Y ′2X1 + op (1) by Lemma

5*(i) and hence, T−1z′X1
p→ E (Y2t−1X

′
1t) .

For brevity, we can merge (S–10) and (S–11) into

DTZ
′
2X2DT

p→ ΣZ
′
2Z2

=

 ω ΣzX2 0

Σ′zX2
ΣX2X2 0

0 0 σ2
ε1

 , (S–12)

where

ΣzX2 =

{
0, if α2 → 0
√
−α2E (Y2t−1X

′
2t) , if α2 < 0 and fixed.

(S–13)

If Tα2 → c ≤ 0, then

DTZ
′
2X2DT ⇒ ΨZ

′
2X2

=


2ω
(∫ 1

0
JcdJc + 1

)
0 0

0 ΣX2X2 0

0 0 σ2
ε1

 . (S–14)

Therefore, in both cases given in (S–12) and (S–14), DTZ
′
2X2DT is invertible with

probability approaching one, and hence,(
DTZ

′
2X2DT

)−1

= Op (1) . (S–15)

Next, by Lemma P(iii) and the Central Limit Theorem,

DTZ
′
2v2 =


√
κT z

′v2√
1
T
X ′2v2√

1
T
ε′1v2

 = Op (1) . (S–16)

Putting (S–15) and (S–16) together yields ψ̂2
p→ ψ2.
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3.5 Proof of Proposition 6

To prove the second result, we can follow the steps of the proof of MPet Lemma 3.3.

The conditional variance of ζTt is given by

T∑
t=1

EFTt−1
[ζTtζ

′
Tt] = AT

p→ Vζ (S–17)

where

A11,T =
T∑
t=1

κT z
2
tEFTt−1

((
ε1t

v2t

)(
ε1t

v2t

)′)
p→ ω

(
σ2
ε1

0

0 σ2
v2

)
= Vζ,11,

A12,T =
T∑
t=1

EFTt−1

((
ε1t

v2t

)
ε1t

)√
κT
T
ztX

′
1t

p→
(
σ2
ε1

0

)
ΣzX1 = Vζ,12,

by (3) and (S–19),

A13,T =
T∑
t=1

√
κT
T
ztEFTt−1

((
ε1t

v2t

)(
ε2

1t − σ2
ε

)) p→ 0 = Vζ,13,

if the distribution of ε1t is not skewed,

A14,T =
(∑T

t=1 EFTt−1

((
ε1t
v2t

)
v2t

)√
κT
T
ztX

′
2t

∑T
t=1

√
κT
T
ztEFTt−1

((
ε1t
v2t

)
v2tε1t

))
p→
((

0
σ2
v2

)
ΣzX2 0

)
= Vζ,14,

by (3) and (S–13),

A22,T =
T∑
t=1

X1tX
′
1t

T
EFTt−1

(
ε2

1t

) p→ ΣX1X1σ
2
ε1

= Vζ,22,

A23,T =
T∑
t=1

X1t

T
EFTt−1

(
ε1t

(
ε2

1t − σ2
ε

)) p→ 0 = Vζ,23,

if the distribution of ε1t is not skewed,

A24,T =
(∑T

t=1EFTt−1
(ε1tv2t)

X1tX′2t
T

∑T
t=1 EFTt−1

(ε2
1tv2t)

X1t

T

)
p→ 0 = Vζ,24,

13



A33,T =
T∑
t=1

EFTt−1

[
(ε2

1t − σ2
ε)

2
]

T

p→ $ = Vζ,33,

A34,T =
(∑T

t=1

EFTt−1 [(ε
2
1t−σ2

ε)v2t]X′2t
T

∑T
t=1

EFTt−1 [(ε
2
1t−σ2

ε)ε1tv2t]
T

)
p→ 0 = Vζ,34,

and

A44,T =
T∑
t=1

EFTt−1

((
X2t

ε1t

)(
X2t

ε1t

)′
v2

2t

)
T

p→

(
ΣX2X2 0

0 σ2
ε

)
σ2
v = Vζ,44.

Putting these together, we have

Vζ =



ω

(
σ2
ε1

0

0 σ2
v2

) (σ2
ε1
0

)
ΣzX1 0

((
0
σ2
v2

)
ΣzX2 0

)
ΣX1X1σ

2
ε1

0 0

$ 0(
ΣX2X2 0

0 σ2
ε

)
σ2
v


Asymptotic normality of

∑T
t=1 ζTt is established by verifying the Lindeberg condi-

tion in MPet Proposition A1, i.e.,

T∑
t=1

EFTt−1

(
‖ζTt‖2 1 {‖ζTt‖ > δ}

) p→ 0 δ > 0,

where

‖ζTt‖2 = κT z
2
t

∥∥∥∥(ε1t

v2t

)∥∥∥∥2

+
‖X1t‖2 ε2

1t

T
+

(ε2
1t − σ2

ε)
2

T
+
‖X2t‖2 v2

2t

T
+
ε2

1tv
2
2t

T
.

The proof of this follows the same steps as the proof of MPet Lemma 3.3. Hence,

T∑
t=1

ζTt ⇒ N (0, Vζ) ,

where Vζ is given by (S–17).

Now, turn to the derivation of GT . First, we need an expression for DTCZ′2Z2
. Define

14



W = (X1, ε1) , so that

Z
′
2Z2 =

(
z′z z′W

W ′z W ′W

)
,

and

CZ′2Z2
=

(√
z′z 0

W ′z√
z′z

(W ′MzW )1/2

)
.

Thus,

DTCZ′2Z2
=

(√
κT 0

0 T−1/2Ipψ2−1

)(√
z′z 0

W ′z√
z′z

(W ′MzW )1/2

)

=

(√
κT z′z 0

T−1/2W ′z√
z′z

T−1/2 (W ′MzW )1/2

)
(S–18)

It can be verified that its inverse is

(
DTCZ′2Z2

)−1

=

(
1√
κT z′z

0

− (W ′MzW )−1/2W ′z√
κT z′z

√
z′z

T 1/2 (W ′MzW )−1/2

)
.

Hence, by simple algebra it can be verified that

GT =



1

σε1(κT z′MX1
z)

1/2 0 −
√
TκT z

′X1(X′1X1)
−1

σε1(κT z′MX1
z)

1/2 0 0

0 0
(
X′1X1

Tσ2
ε1

)−1/2

0 0

0 0 0 1√
$

0

0 1

σv2 (κT z′z)
1/2 0 0 0

0 − (W ′MzW )−1/2W ′z√
κT z′zσv2

0 0 1
σv2

(
W ′MzW

T

)−1/2


is such that GT

∑
ζTt = ξ∗.

Finally, using the above results, it can be verified that GTVζGT
p→ Ik.

The result that ξ̂
d→ N (0, Ik) follows by Slutsky and the Continuous Mapping

Theorem.
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3.6 Proof of Proposition 7

We need to derive the asymptotic behavior of

BT Ĉψ̂ =


T−1/2 (X ′1X1)1/2 σ̂−1

ε1
0 −d21T

−1/2X ′1Ẑ2C
′−1

Ẑ′2Ẑ2
σ̂−1
v2

0 $̂−1/2 0

0 0 DT X̂
′
2Ẑ2C

′−1

Ẑ′2Ẑ2
σ̂−1
v2

 .

First, T−1/2 (X ′1X1)1/2 σ̂−1
ε1

p→ Σ
1/2

X′1X1
σ−1
ε1

and $̂−1/2 p→ $−1/2. Next, by Proposition

5,

T−1/2X ′1Ẑ2C
′−1

Ẑ′2Ẑ2
σ̂−1
v2

= T−1/2X ′1Z2DTD
−1
T C ′−1

Z
′
2Z2
σ−1
v2

+ op (1) ,

and

DT X̂
′
2Ẑ2C

′−1

Ẑ′2Ẑ2
σ̂−1
v2

= DTX
′
2Z2DTD

−1
T C ′−1

Z
′
2Z2
σ−1
v2

+ op (1) .

Next, note that DTCZ′2Z2
is given in (S–18), or

DTCZ′2Z2
=


√
κT z′z 0
√

κT
T
W ′z

√
κT z′z

(
W ′W
T
−
√

κT
T
W ′z
√

κT
T
z′W

κT z′z

)1/2

 .

If α2 < 0 is fixed, then, by Lemma P(i) and (iv),

DTCZ′2Z2

p→

(√
ω 0

ΣW ′z
σz

(ΣW ′W − ΣW ′zσ
−2
z Σ′W ′z)

1/2

)
,

where σ2
z = ω/ |α2| ,

ΣW ′W =

(
ΣX′1X1

0

0 σ2
ε1

)
, and ΣW ′z =

(
E (X1tzt)

0

)
.

If α2 → 0, then, by Lemma P(i) and (iv) and the fact that
√

κT
T

= o (T−1) ,

DTCZ′2Z2

p→

(√
ω 0

0 Σ
1/2
W ′W

)
.

In both cases, the limiting matrix will be denoted by CΣ
Z
′
2Z2

and is of full rank.
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Next,

DTZ
′
2X1T

−1/2 =


√

κT
T
z′X1

T−1X ′2X1

T−1ε′1X1

 p→

 ΣzX1

ΣX′2X1

0

 = ΣZ
′
2X1

,

where ΣX′2X1
= limT→∞E (X2tX

′
1t) and, by the same arguments as for (S–13),

ΣzX1 =

{
0, if α2 → 0
√
−α2E (Y2t−1X

′
1t) , if α2 < 0 and fixed.

(S–19)

Finally, the limiting behavior of DTZ
′
2X2DT is given by (S–11) and (S–14). Putting

all of these together, we have

BT Ĉψ̂ ⇒


Σ

1/2

X′1X1
σ−1
ε1

0 −d21Σ′
Z
′
2X1

C ′−1
Σ
Z
′
2Z2

σ−1
v2

0 $−1/2 0

0 0 Ψ33

 ,

where

Ψ33 =

 Σ−1

Z
′
2Z2
C ′−1

Σ
Z
′
2Z2

σ−1
v2
, if Tα2 → −∞

Ψ−1

Z
′
2X2

C ′−1
Σ
Z
′
2Z2

σ−1
v2
, if Tα2 → c ≤ 0.

(S–20)

Hence, Ψ is invertible a.s., as required. In the case Tα2 → c ≤ 0, Ψ is random due

to the term ΨZ
′
2X2

defined in (S–14). The independence of Ψ from ξ then follows from

Lemma P(ii) and (iii).

3.7 Proofs extending MPvic to general sequences

Lemmas 1*, 2*, 5* and 6* above are the counterparts – under general sequences –

to MPvic-Lemmas 3.1, 3.2, 3.5 and 3.6. We provide below the proofs of the various

lemmas by proving all the results in the Technical Appendix to MPvic. For readability

and to avoid repeating the whole Appendix of MPvic, we delineate changes that should

be read in relation to MPvic. The proofs are here presented in the univariate setting

since this is the one we consider in the application but the results are also valid for

the multivariate setting, as in MPvic. Note that the case cT constant is not treated in

MPvic but in KMS, Lemmas B2 and B4.

MPvic-Proposition A.1 holds since Assumption N*(iii) only intervenes in the

definition of zt, and the latter is unaffected by the change (as opposed to z̃t).
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MPvic-Proposition A.2. Equation (MPvic-42) holds with (MPvic-43) such that

in the univariate case

sup
1≤t≤T

t∑
j=1

ρt−jT =
1− ρTT
1− ρT

=


O
(
−c−1

T

)
, if TcT → −∞

O (T ) , if TcT → c < 0

O (T ) , if TcT → 0

= O
(
T∧
∣∣c−1
T

∣∣) .
Now, if zt is less persistent than the regressor (cT = o

(
T−b

)
), then

sup
1≤t≤T

E
(
ψ2
Tt

)
= O

(
T 2b

cT

)
,

and when T−b = O (cT )

sup
1≤t≤T

E
(
ψ2
Tt

)
= O

(
T b

c2
T

)
,

so (MPvic-40) writes:

sup
1≤t≤T

E
(
ψ2
Tt

)
= O

(
T b

cT

[
T b ∧

∣∣c−1
T

∣∣]) . (S–21)

Now for (MPvic-41), we need to consider

E

∥∥∥∥∥∥ 1

T 1/2

√
T b

−cT

[
T b ∨

∣∣c−1
T

∣∣]
T∑
t=1

ψTtεt

∥∥∥∥∥∥
2

≤
E ‖ε1‖2 sup1≤t≤T E ‖ψTt‖

2

T b

cT

[
T b ∨

∣∣c−1
T

∣∣]
= O

(
T b ∧

∣∣c−1
T

∣∣
T b ∨

∣∣c−1
T

∣∣
)

= O (1) .

Now, regarding
∑T

t=1 ∆ε̃tψTt, we need, for all cT = o (1) , the following:

T∑
t=1

ε̃txt = Op (T ) . (S–22)

As in MPvic, this holds from Phillips (1987) under N*(i)-(ii) . With serially depen-

dent innovations, we refer to GP12-Theorem 2.2(ii) which shows that under N*(iii)
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∑T
t=1 ε̃txt = Op

(
(c3
TT )

−1/2
)

= o (T ) . The framework of GP12 assumes cT ∈ [−1, 0] .

It is easy to see that if x0 = op

(√
T

1−TcT

)
, (S–22) holds under N*(iii) since there

exists T0 such that cT ∈ [−2, 0] for all T > T0 and hence we can decompose the sam-

ple moments computed over t = 1, ..., T0 and T0, ..., T where only the latter use the

asymptotic results of GP12, the former becoming negligible.

Now,

1

T 1/2

√
T b

−cT

[
T b ∨

∣∣c−1
T

∣∣]
T∑
t=1

∆ε̃tψTt =
1

T 1/2

√
T b

−cT

[
T b ∨

∣∣c−1
T

∣∣]−czT b

T∑
t=1

ε̃tψTt + op (1) ,

where following MPvic,∥∥∥∥∥∥ 1

T 1/2

√
T b

−cT

[
T b ∨

∣∣c−1
T

∣∣] czT b
T∑
t=1

ε̃tψTt

∥∥∥∥∥∥
L1

≤ E ‖ε1‖2

T 1/2

√
T b

−cT

[
T b ∨

∣∣c−1
T

∣∣] 1

T b
T

(
sup

1≤t≤T
E ‖ψTt‖2

)1/2

=
T 1/2E ‖ε1‖2

T b
√

T b

−cT

[
T b ∨

∣∣c−1
T

∣∣]
(

sup
1≤t≤T

E ‖ψTt‖2

)1/2

≤ O

 1

T b−1/2

√
T b

−cT

[
T b ∧

∣∣c−1
T

∣∣]√
T b

−cT

[
T b ∨

∣∣c−1
T

∣∣]


= O

(
1

T b−1/2

√
T b ∧

∣∣c−1
T

∣∣
T b ∨

∣∣c−1
T

∣∣
)

= O

(
1

T b−1/2

)
,

hence for b ∈ (1/2, 1) the equation above is o (1). Hence MPvic-Proposition A.2 holds,

with
1

T 1/2

√
T b

−cT

[
T b ∨

∣∣c−1
T

∣∣]
T∑
t=1

utψTt
p→ 0, when b ∈ (1/2, 1) .

MPvic-Lemma 3.1. The proof then follows. It uses the fact that

sup
s∈[0,1]

∥∥xbsT c∥∥ = Op

(√
T

1− TcT

)
, (S–23)

i.e., sups∈[0,1]

∥∥xbsT c∥∥ = Op

(
|cT |−1/2

)
when TcT → −∞ and Op

(
T 1/2

)
otherwise, see

GP12, Expression (2.13) of Lemma 2.1 under assumption N*(iii) and Phillips (1987)
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under N*(i)-(ii). Hence

sup
1≤t≤T

‖ψTt‖ = Op

√ T 1+2b

1− TcT

 .

For part (i) of the lemma, we use

1

T
1+b
2

(
T∑
t=1

utz̃t −
T∑
t=1

u0tzt

)
=

cT

T
1+b
2

T∑
t=1

utψTt = op (1) ,

from the extension to MPvic-Proposition A.2 above.

For part (ii) , this involves (MPvic-18) which requires under N*(iii)

T−1

T∑
t=1

xt−1εt
p→ 0, (S–24)

where E (xt−1εt) = 0. When cT → 0, this holds by virtue of GP12, Theorem 2.2.

Indeed, GP12 show that the estimators of the autocovariance of xt are consistent, so

in particular (S–24) must hold. When limT→∞ cT < 0, the results hold since xt−1εt

is a martingale difference sequence with bounded variance. Hence part (ii) of Lemma

MPvic-3.1 writes here

T−(1+b)

T∑
t=1

xtz̃t = T−(1+b)

T∑
t=1

xtzt −
cT cz
T

T∑
t=1

x2
t + op (1) .

For part (iii) of the lemma,

1

T 1+b

∥∥∥∥∥
T∑
t=1

z̃2
t −

T∑
t=1

z2
t

∥∥∥∥∥
2

≤ c2
T

T 1+b

T∑
t=1

‖ψTt‖2 − 2
cT
T 1+b

T∑
t=1

‖ψTt‖ ‖zt‖

≤
(
cT supt≤T ‖ψTt‖

T b/2

)2

+

(−cT supt≤T ‖ψTt‖
T b/2

)
Op (1) ,

where we used the Lyapunov inequality as in MPvic. Now sup1≤t≤T ‖ψTt‖ = Op

(√
T 1+2b

1−TcT

)
so

−cT supt≤T ‖ψTt‖
T b/2

= Op

(√
−cTT (1+b)/2

)
= op (1) ,

since zt is less persistent than the regressor.
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MPvic-Theorem 3.4: we need the asymptotic behavior of

LT =
−cT
T

T∑
t=1

x2
t

under N*(iii) . GP12-Theorem 2.2 shows that the estimator of the variance of xt is

consistent and GP12-Lemma 2.1 shows that var (xt) = O
(∣∣c−1

T

∣∣) , hence

−cT
T

T∑
t=1

x2
t

p→ Ωvv.

The rest follows as in MPvic.

MPvic-Lemma 3.2 hence also holds, where the rate of convergence is −cT
T

∑T
t=1 x

2
t−1.

Joint convergence follows from MPvic-Lemma 3.2, when there exists c ≤ 0 such that

Tα2 → c, and from applying Theorem 2.2 of GP12 when Tα2 → −∞.
MPvic-Lemma 3.5 uses the decomposition

z̃t = xt − ρtzx0 +
cz
T b
ψTt,

in (i)√
−cT
T

(
T∑
t=1

utz̃t −
T∑
t=1

utxt

)
=

√
−cT
T

[
cz
T b

T∑
t=1

utψTt −
T∑
t=1

utx0ρ
t
z

]

=

√
−cT

T 1/2+b
cz

T∑
t=1

utψTt + op

(√
−cT
T 1/2

T b/2
√

1

−cT

)

=

√
−cT

T 1/2+b
cz

T∑
t=1

utψTt + op

(
1

T (1−b)/2

)
,

assuming x0 = op

(√
T/ (1− TcT )

)
and using

∑T
t=1 utρ

t
z = Op

(
T b/2

)
as in MPvic.

The extension to MPvic-Proposition A.2 above shows that when the regressor is less

persistent than the instrument

T∑
t=1

utψTt = op

(
T 1/2+b |cT |−1/2

)
,

QED.
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Now for part (ii) ,

cT
T

(
T∑
t=1

xtz̃t −
T∑
t=1

x2
t

)
=
cT
T

[
cz
T b

T∑
t=1

xtψTt −
T∑
t=1

xtx0ρ
t
z

]

=
cT
T 1+b

cz

T∑
t=1

xtψ
′
Tt + op

(
1

T 1−b

)
,

as supt≤T ‖xt‖ = Op

(√
T

1−TcT

)
, x0 = op

(√
T

1−TcT

)
and

∑T
t=1 ρ

t
z = O

(
T b
)
. For the

leading term, GP12-Lemma 2.1 shows that

sup
1≤t≤T

E ‖xt‖2 = O
(∣∣c−1

T

∣∣) .
Hence, using Proposition A.2.∥∥∥∥∥ cT

T 1+b
cz

T∑
t=1

xtψTt

∥∥∥∥∥
L1

≤ Op

(
−cT
T b

(
T b

c2
T

1

−cT

)1/2
)

= Op

(
1

|cT |1/2 T b/2

)
= op (1) .

Finally for
∑T

t=1 z̃
2
t , as in MP we only need to consider∥∥∥∥∥ cT

T 1+b

T∑
t=1

ψTtx0ρ
t
z

∥∥∥∥∥ = op

(
−cT
T 1+b

√
1

−cT

√
T

1− TcT
T b

)
= op (1) ,

and when cTT
b → −∞,

E

∥∥∥∥∥ cT
T 1+2b

T∑
t=1

ψ2
Tt

∥∥∥∥∥ ≤ −cTT 2b

T b

c2
T

=
1

−cTT b
= o (1) .

MPvic-Lemma 3.6 The results of MPvic hold when cT = κT−b but we need to

consider the case where cT = κTT
−b with κT ∈ (M, 0) , for M < 0. Then Expression

MPvic-(48) becomes

z̃t = ρz z̃t−1 + vt +
κT
T b
xt−1.
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This implies

(1− ρzρT )
1

T

T∑
t=1

z̃t−1xt−1 =
1

T

T∑
t=1

xt−1vt +
1

T

T∑
t=1

vtzt−1 +
1

T

T∑
t=1

v2
t +

κT
T 1+b

T∑
t=1

x2
t−1,

where 1− ρzρT = −T−b (cz + κT ) . GP12 Lemma 2.1 and Theorem 2.2(i) imply that

κT
T 1+b

T∑
t=1

x2
t−1

p→ −1

2
Ωvv.

Also, notice that T−1
∑T

t=2 xt−1vt = T−1
(∑T

t=2 xtxt−1 − ρT
∑T

t=2 x
2
t−1

)
. The same

lemma and theorem in GP12 can therefore be used to obtain the results in MPvic that

1

T

T∑
t=1

xt−1vt +
1

T

T∑
t=1

vtzt−1 +
1

T

T∑
t=1

v2
t

p→ Ωvv.

Therefore

− (cz + κT )T−(1+b)

T∑
t=1

z̃t−1xt−1
p→ 1

2
Ωvv.

which proves part (i) .

Now for part (ii) ,

(
1− ρ2

z

)
T−1

T∑
t=1

z̃2
t−1 = (1 + op (1))T−1

{
2

T∑
t=1

(
vt +

κT
T b
xt−1

)
z̃t−1 +

T∑
t=1

(
vt +

κT
T b
xt−1

)2
}
,

where T−1
∑T

t=1

(
vt + κT

T b
xt−1

)2 p→ E (v2
t ), and

T−1

T∑
t=1

(
vt +

κT
T b
xt−1

)
z̃t−1 = T−1

T∑
t=1

vtz̃t−1 +
κT
T 1+b

T∑
t=1

xt−1z̃t−1

= Λvv +
−κT

2 (cz + κT )
Ωvv + op (1) ,

where Λvv =
∑∞

h=1E (vtvt−h) .

Collecting all elements, −2czT
−(1+b)

∑T
t=1 z̃

2
t−1 =

[
1 + −κT

(cz+κT )

]
Ωvv + op (1) , i.e.,

− (cz + κT )T−(1+b)

T∑
t=1

z̃2
t−1

p→ 1

2
Ωvv.
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For part (iii) , the results follow the same lines (including the extension to MPvic-

Proposition A.2 above) and hence

√
− (cz + κT )T−

1+b
2

∑
z̃t−1ut

L→ N

(
0,

1

2
ΩvvΩuu

)
.

MPvic-Lemma 4.2. The case where cT = O
(
T−b

)
is considered by MPvic. Only

the case cTT
b → −∞ is new. We saw previously that

Jn = T−1

T∑
t=1

xt−1εt = op (1) ,

and 1
cT

(1− ρρz) = 1
cT

(
1− (1 + cT )

(
1 + czT

−b))→ −1. Hence,

−cT
T

T∑
t=1

xt−1zt−1
p→ Ωvv,

and the results in MPvic hold, replacing T−a with −cT and cz with −1.

4 Finite sample corrections in the presence of in-

tercepts

The finite sample correction in KMS, applied to theAR (b0
12) in (9) consists in modifying

PMX1
z in the numerator. When the model contains an intercept, let X1 =

[
ι : X̃1

]
,

where ι is a T1-dimensional vector of ones (T1 is the number of observations used in

the regressions). The numerator of the AR statistic involves an estimator the inverse

of the variance of (z′MX1z)−1 z′MX1ε1 conditional on the process {u2t} . We notice

MX1z = MX̃1
Mιz = MX̃1

(z − ιzT ) .

with z = T−1
1

∑T
t=max(m,2) zt. In KMS, MX̃1

does not appear. They show that in

z′Mιε1 = z′ε1−T1z ε1, the long-run covariance between zt and ε1t which asymptotically

appears via the product T1z ε1 vanishes asymptotically but matters in finite samples.

They hence suggest using, instead of PMιz, the corrected

P̃Mιz = Mιz
(
z′z − T1

(
1− ρ̂2

ε1,u2

)
zz′
)−1

z′Mι, (S–25)
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where ρ̂ε1,u2 is the estimated long run correlation between ε1t and u2t. In (S–25) the

term
(

1− ρ̂2
ε1,u2

)
accounts for the long term variance of

∑
t ε1t conditional on the pro-

cess Y2t−1 (or zt).

In the context of the AR statistic, this correction becomes

P̃MX1
z = MX1z

(
z′MX̃1

z −
(

1− ρ̂2
ε1,u2

)
T1zz

′
)−1

z′MX1 , (S–26)

where we considered only the higher order term zz′ instead of MX̃1
zMX̃1

z
′
.

A similar correction can be applied to the statistic W (b0
12) , where the adjustment

now bears on V̂ψ̂,33 (b12) defined in (25). For ease of exposition, we consider the hypoth-

esis H∗0 : r (θ) = 0, b12 = b0
12 where r (θ) = α2 − α0

2 in equation (3) since assumptions

concerning α2 are the only ones that bear finite sample adjustments in W (b0
12) . Now

ψ̂2 =
(
Ẑ ′2X̂2

)−1

Ẑ ′2
(
X2ψ2 + ε2

)
and, denoting X̂21 = [X2 : ε̂1] ,

α̂2 =
(
Ẑ ′2MX̂21

X̂2

)−1

Ẑ ′2MX̂21

(
X2ψ2 + ε2

)
=
(
Ẑ ′2MX̂21

X̂2

)−1

Ẑ ′2MX̂21

(
X̂2ψ2 +

(
X2 − X̂2

)
ψ2 + ε2

)
.

Hence, α̂2 − α2 =
(
Ẑ ′2MX̂21

X̂2

)−1

Ẑ ′2MX̂21
(ε2 + (ε1 − ε̂1) d21) , i.e.,

α̂2 − α2 =
(
Ẑ ′2MX̂21

X̂2

)−1

Ẑ ′2MX̂21
(ε2 + PX1ε1d21) .

In our model, X1 = X2 hence MX̂21
PX1 = 0, and

α̂2 − α2 =
(
Ẑ ′2MX̂21

X̂2

)−1

Ẑ ′2MX̂21
ε2.

The variance of α̂2 − α2 is

Vα̂2 =
(
Ẑ ′2MX̂21

X̂2

)−1

Ẑ ′2MX̂21
Ẑ2

(
X̂ ′2MX̂21

Ẑ2

)−1

σ2
ε2
,
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so the W statistic is

(α̂2 − α2)′ V −1
α̂2

(â− a) =
ε′2tMX̂21

Ẑ2

(
Ẑ ′2MX̂21

Ẑ2

)−1

Ẑ ′2MX̂21
ε2t

σ2
ε2

.

The final sample approximation of KMS consists in replacing
(
Ẑ ′2MX̂21

Ẑ2

)−1

with

(
z′z − T

(
1− ρ̂2

ε2,u2

)
zz′
)−1

,

where ρ̂ε2,u2 is the estimate of the long run correlation between ε2t and u2t such that

1− ρ̂2
ε2,u2

= ρ̂2
ε1,u2

. The Wald statistic becomes

W (α2) =
ε′2tMX̂21

Ẑ2

(
z′z − T

(
1− ρ̂2

ε2,u2

)
zz′
)−1

Ẑ ′2MX̂21
ε2t

σ2
ε2

.

which is in practice obtained as

Ŵ (α2) =
(α̂2 − α2)′

(
X̂ ′2MX̂21

Ẑ2

) (
z′z − T

(
1− ρ̂2

ε2,u2

)
zz′
)−1
(
Ẑ ′2MX̂21

X̂2

)
(α̂2 − α2)

σ̂2
ε2

=
(α̂2 − α2)′

(
X̂ ′2MX̂21

Ẑ2

) (
z̆′z̆ + T ρ̂2

ε2,u2
zz′
)−1
(
Ẑ ′2MX̂21

X̂2

)
(α̂2 − α2)

σ̂2
ε2

,

where z̆ = z − ιz′. KMS do not consider the presence of additional regressors and lags

in the equation. In our setting, the final sample approximation above should hence

preferably be replaced with

Ŵ (α2) =
ε′2tMX̂21

Ẑ2

(
z′MX̂21

z + T ρ̂2
ε2,u2

zz′
)−1

Ẑ ′2MX̂21
ε2t

σ̂2
ε2

,

where σ̂2
ε2

can possibly be replaced with the corresponding estimate of the long run

variance.

Now for the general case, the results above combine into V̂ψ̂,33 (b12) whose finite

sample adjustment becomes:

V̂ψ̂,33 (b12) =
(
Ẑ ′2X̂2

)−1 ([
Ẑ ′2Ẑ2 + T ρ̂2

ε2,u2
zz′
]
σ̂2
ε2

+
[
Ẑ ′2PX1Ẑ2 + T ρ̂2

ε1,u2
zz′
]
σ̂2
ε1
d12

)(
X̂ ′2Ẑ2

)−1

.

(S–27)
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At 5% At 10%
ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.049 0.006 0.066 0.770 0.098 0.025 0.126 0.802

−1 0.047 0.008 0.060 0.676 0.096 0.029 0.119 0.716

−10 0.045 0.020 0.039 0.258 0.091 0.055 0.080 0.308

−30 0.036 0.035 0.034 0.144 0.078 0.084 0.079 0.186

−100 0.028 0.048 0.052 0.081 0.065 0.100 0.113 0.117

Table S.1: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0 : b12 = 0 in a bivariate SVAR(2) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. The sample size is 200.
Number of MC replications: 20000.

5 Supplementary material for numerical section

We report additional simulation results on sizes of the AR and ARW tests with filtered

instruments versus the conventional t test with standard (unfiltered) instruments for

the bivariate SVAR described in the paper, with some variations.

5.1 Null rejection frequencies for the AR test

First, we report results on the null rejection frequency of the AR test of H0 : b12 = 0

against H1 : b12 6= 0 when the estimated model is SVAR(2) or SVAR(4) and the DGP

is exactly as in Section 4 in the paper. The results are reported in Tables S.1 and S.2,

and they are comparable directly with Table 1 in the paper.

Next, we consider the case in which DGP may have a linear trend, i.e., the observed

data is Ỹ2t = Y2t + γ0 + γxt, and the SVAR is estimated on sample-detrended data

Ŷ2t = Ỹ2t − γ̂0 − γ̂1t, where γ̂0 and γ̂1 are full-sample or recursive OLS estimates. The

true value of γ0 is set to zero w.l.o.g. (since the statistics are invariant to the value of

the constant), and γx is either 0 or 1.

Table S.3 reports results when the model is SVAR(1) and γx = 0. In Table S.4, the

model is SVAR(1) and γx = 1. In each table, we present two cases: recursive detrending

(top panel), and full-sample detrending (bottom panel).

Overall, Tables S.3 and S.4 show that, no matter γx = 0 or 1, the outcome is the
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At 5% At 10%
ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.042 0.008 0.054 0.765 0.089 0.027 0.114 0.799

−1 0.039 0.009 0.050 0.668 0.086 0.030 0.108 0.708

−10 0.030 0.019 0.031 0.261 0.073 0.056 0.068 0.305

−30 0.020 0.035 0.024 0.147 0.054 0.084 0.063 0.186

−100 0.018 0.045 0.039 0.101 0.050 0.096 0.095 0.132

Table S.2: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0 : b12 = 0 in a bivariate SVAR(4) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. The sample size is 200.
Number of MC replications: 20000.

same: recursive detrending and AR controls size reasonably, and recursive detrending

performs better than full sample detrending.

Tables S.5 and S.6 report the counterparts of Tables S.3 and S.4 when the estimated

model is SVAR(m), for m = 2 and 4 with recursive detrending.

5.2 Size of the projection ARW test

The simulations for the size of the projection ARW test of the hypothesis H0 : d21 = d0
21

against H1 : d21 6= d0
21 are based on the following 4-dimensional grid. The grid contains

21 points for d21 ∈ [−1, 1] in steps of 0.1, 21 points for ρ ∈ {−.99,−.9, ..., .9, .99} ,
7 points for ω1 ∈ {.1, .4, .7, 1, 4, 7, 10} and 14 points for c ∈ {−200,−150,−100,−50,

−40,−30,−20,−10,−5,−4,−3,−2,−1, 0}. Because the ARW statistic is invariant to

ω2, we normalize w.l.o.g. this parameter to 1. The parameter b12 in the DGP can then

be obtained as a function of ρ, ω1 and d21.

Figure S.1 reports maximal rejection frequencies across ρ, ω1 and c of the projection

ARW test of H0 : d21 = d̄21 as a function of d̄21 for three different levels of significance:

10%, 5% and 1%. The sample size is T = 2000 and the number of Monte Carlo

replications is 10000. These can be thought of as estimates of the asymptotic size

of the projection test at different levels of significance. They are very close to the
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γx = 0, recursive detrending
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.052 0.009 0.046 0.158 0.101 0.032 0.092 0.194

−1 0.051 0.009 0.044 0.139 0.102 0.031 0.090 0.173

−10 0.052 0.016 0.045 0.102 0.103 0.049 0.092 0.133

−30 0.053 0.033 0.049 0.078 0.103 0.078 0.098 0.112

−100 0.056 0.049 0.051 0.056 0.107 0.100 0.101 0.100

γx = 0, full sample detrending
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.060 0.021 0.221 0.946 0.112 0.063 0.343 0.958

−1 0.056 0.020 0.170 0.890 0.110 0.060 0.276 0.911

−10 0.053 0.027 0.072 0.405 0.105 0.071 0.131 0.465

−30 0.050 0.038 0.052 0.192 0.100 0.087 0.101 0.247

−100 0.052 0.050 0.048 0.084 0.101 0.100 0.095 0.132

Table S.3: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0: b12 = 0 in a bivariate SVAR(1) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. Y2 is detrended recursively
(top panel) or over the full-sample (bottom panel). The true coefficient on the trend
is γx = 0. The sample size is 200. Number of MC replications: 20000.
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γx = 1, recursive detrending
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.052 0.009 0.046 0.158 0.101 0.032 0.092 0.194

−1 0.051 0.009 0.044 0.139 0.102 0.031 0.090 0.173

−10 0.052 0.016 0.045 0.102 0.103 0.049 0.092 0.133

−30 0.053 0.033 0.049 0.078 0.103 0.078 0.098 0.112

−100 0.056 0.049 0.051 0.056 0.107 0.100 0.101 0.100

γx = 1, full sample detrending
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.060 0.021 0.221 0.946 0.112 0.063 0.343 0.958

−1 0.056 0.020 0.170 0.890 0.110 0.060 0.276 0.911

−10 0.053 0.027 0.072 0.405 0.105 0.071 0.131 0.465

−30 0.050 0.038 0.052 0.192 0.100 0.087 0.101 0.247

−100 0.052 0.050 0.048 0.084 0.101 0.100 0.095 0.132

Table S.4: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0: b12 = 0 in a bivariate SVAR(1) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. Y2 is detrended recursively
(top panel) or over the full-sample (bottom panel). The true coefficient on the trend
is γx = 1. The sample size is 200. Number of MC replications: 20000.
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m = 2
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.044 0.010 0.048 0.155 0.092 0.033 0.097 0.193

−1 0.044 0.010 0.046 0.135 0.092 0.033 0.093 0.169

−10 0.043 0.016 0.043 0.100 0.087 0.049 0.093 0.130

−30 0.035 0.032 0.043 0.078 0.077 0.079 0.095 0.107

−100 0.030 0.045 0.058 0.052 0.068 0.096 0.123 0.078

m = 4
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.033 0.010 0.039 0.152 0.075 0.032 0.087 0.186

−1 0.034 0.010 0.037 0.130 0.074 0.031 0.084 0.161

−10 0.030 0.016 0.032 0.093 0.071 0.049 0.075 0.119

−30 0.022 0.030 0.032 0.073 0.057 0.076 0.080 0.097

−100 0.021 0.040 0.046 0.062 0.054 0.092 0.106 0.082

Table S.5: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0: b12 = 0 in a bivariate SVAR(m) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. Y2 is detrended recursively.
The true coefficient on the trend is γx = 0. The sample size is 200. Number of MC
replications: 20000.
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m = 2
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.044 0.010 0.048 0.155 0.092 0.033 0.097 0.193

−1 0.044 0.010 0.046 0.135 0.092 0.033 0.093 0.169

−10 0.043 0.016 0.043 0.100 0.087 0.049 0.093 0.130

−30 0.035 0.032 0.043 0.078 0.077 0.079 0.095 0.107

−100 0.030 0.045 0.058 0.052 0.068 0.096 0.123 0.078

m= 4
At 5% At 10%

ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.033 0.010 0.039 0.152 0.075 0.032 0.087 0.186

−1 0.034 0.010 0.037 0.130 0.074 0.031 0.084 0.161

−10 0.030 0.016 0.032 0.093 0.071 0.049 0.075 0.119

−30 0.022 0.030 0.032 0.073 0.057 0.076 0.080 0.097

−100 0.021 0.040 0.046 0.062 0.054 0.092 0.106 0.082

Table S.6: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0: b12 = 0 in a bivariate SVAR(m) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. Y2 is detrended recursively.
The true coefficient on the trend is γx = 1. The sample size is 200. Number of MC
replications: 20000.
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Figure S.1: Size of the projection ARW test of the hypothesis H0 : d21 = d̄21, in a
SVAR(1) model with T=2000 at three different significance levels. The number of
Monte Carlo replications is 10000.

corresponding results in Figure 1 in the paper for the case T = 200.

Figure S.2 reports the size of an ARW test that uses χ2
1 instead of χ2

2 critical values,

corresponding exactly to the cases reported in Figure S.1. We see that the ARW test

with degrees of freedom correction overrejects for many values under the null. So,

confidence intervals on d21 obtained by inverting this test have asymptotic coverage

below their nominal level.

Figure S.3 repeats the exercise in Figure S.2 except the parameter c in the DGP is

constrained to be c = −200 (thus corresponding to a highest root of 0.9). We could

view these results as giving the size of the ARW test with degrees of freedom correction

when the data is stationary and identification is strong. As expected, the size of the

test is equal to its nominal level for all values of d21.
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Figure S.2: Size of the projection ARW test of the hypothesis H0 : d21 = d̄21, using
χ2

1 critical values, in a SVAR(1) model with T = 2000 at three different significance
levels. The number of Monte Carlo replications is 10000.
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Figure S.3: Size of the projection ARW test of the hypothesis H0 : d21 = d̄21, using χ2
1

critical values, in a SVAR(1) model with T = 2000 at three different significance levels,
when the highest root in the VAR is 0.9. The number of Monte Carlo replications is
10000.
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5.3 Large-sample power of the AR test

We report large-sample power curves to complement the results for T = 200 reported

in Figure 2 in the paper. To that end, we set T = 2000 in the simulations. We

compare the power of AR and t tests of H0 : b12 = 0 against H1 : b12 6= 0 at the

10% level of significance. The remaining parameters are ρ ∈ {0.2, 0.95} , ω1 = 1, and

c = {−10,−100,−500}. The chosen values of c correspond to approximate values of

the concentration parameter λ ∈ {1.3, 13, 72} , respectively, i.e., weak, moderate and

strong identification. The range of b12 under H1 is λ−1/2 (−3 : 3).

Figure S.4 reports the resulting power curves in each case. The figure shows that

the AR test has good large sample power even for c close to zero. This is not the case

for the t test, which is both size distorted and even biased in some cases. Moreover,

when identification is strong (c = −500), the power of the AR test is very similar to

that of the t test, which is asymptotically efficient in this case. Since the DGP in

this case is approximately stationary, this is a consequence of the fact that the AR

and t tests are asymptotically equivalent in the case of stationarity, see Remark 2 to

Theorem 1.

5.4 Bonferroni method

We compare the power of projection and Bonferroni tests of H0 : d21 = 0 against

H1 : d21 6= 0 at significance level 10%. We consider three different combinations of

significance level η = 10%. We denote by η1 the significance level for the first-step AR

confidence set for b12 and by η2 = (η − η1) / (1− η1) the level of the Wald test given

b12 in the second step, see Remark 4 below Theorem 2. We set b12 = 0, ω1 = 1 and

consider η1 = 1%, 5.13% and 9% (the second value is such that η1 = η2). We note that

with these parameter values ρ = d21.

We first report in Figure S.5 the power in a large sample of T = 2000 observations

for c = −100 (moderately strong identification) and then, in Figure S.6, for T = 200,

also with c = −100 (strong identification). Under moderately strong identification

the power of the projection test is close to that of the Bonferroni tests that put suf-

ficiently high weight on the first-step AR confidence set for b12, i.e., η1 ≥ η2. Under

strong identification, the projection test is more powerful. This suggests that there

is little to choose from between Bonferroni and projection in this case on the basis

of power under weak identification and that projection is preferable in the identified
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Figure S.4: Large-sample power of AR with filtered instrument (solid line) and t
(dashed line) tests of the hypothesis H0 : b12 = 0 against H1 : b12 6= 0 in the SVAR(1)
model with long run restrictions. T = 2000, 10000 MC replications, ρ is correlation of
reduced-form errors.
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case. Since projection turns out to be slightly faster to compute (it requires solving an

unconstrained optimization problem, as opposed to a constrained optimization with an

inequality constraint for the Bonferroni method), we are using the projection method

in our empirical applications.
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Bonferroni: η

1
 = 1% 

Bonferroni: η
1
 = 5.13% 

Bonferroni: η
1
 = 9% 
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c = 100, T = 2000
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Bonferroni: η
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Bonferroni: η
1
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Figure S.5: Power of Projection ARW (solid line) and three different Bonferroni AR/W
tests of the hypothesis H0 : d21 = 0 against H1 : d21 6= 0 in a bivariate SVAR(1) at
the 10% level of significance. η1 denotes the level of the (first-step) AR test in the
Bonferroni procedure and η2 = (10%−η1)/(1−η1) is the level of the second step Wald
test. T = 2000 and the number of Monte Carlo replications is 10000.

5.5 Concentration parameter

Identification strength is measured using an approximate formula for the concentration

parameter λ. Table S.7 reports values of the concentration parameter for different values

of c and a in the DGP. The numbers in bold are the cases for which the power curve
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Figure S.6: Power of Projection ARW (solid line) and three different Bonferroni AR/W
tests of the hypothesis H0 : d21 = 0 against H1 : d21 6= 0 in a bivariate SVAR(1) at
the 10% level of significance. η1 denotes the level of the (first-step) AR test in the
Bonferroni procedure and η2 = (10%−η1)/(1−η1) is the level of the second step Wald
test. T = 200 and the number of Monte Carlo replications is 10000.

a = 1 0.95
c = −1 0.080590 0.13816

-10 1.2660 1.8737
-40 5.1661 7.5705
-50 6.4644 9.4826

-100 13.026 19.215
-150 19.724 29.276
-500 71.593 111.84

Table S.7: Values of the concentration parameter as a function of c and a in the DGP
where ∆Y2,t = c

Ta
Y2,t−1 + u2t, and u2t is white noise. The sample size is T = 2000.
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is computed in the supplement.

5.6 Choice of parameters (cz, b) when generating instruments

The instrument zt =
∑t−1

j=1 ρ
t−j
Tz ∆Y2,j depends on two parameters such that ρTz = 1+ cz

T b

with b ∈ (1/2, 1) , and cz < 0. We suggest in the paper b = 0.95 and cz = −1. Through

extensive simulation exercises, we show here that this choice induces good size/power

trade-off for the AR test of H0 : b12 = 0. Since the DGP depends on the triplet (c, b12,

ρ), our treatment on c and ρ in the simulation experiment induces various figures below.

Throughout, we test H0 at the 10% level over a sample of size T = 200 observations.

5.6.1 Fixed (c, ρ) = (−10, 0.5)

We first consider a fixed setting for (c, ρ) = (−10, 0.5) and let b12 ∈ {0, 0.5, 1, 2} . We

consider two situations, first fixing cz = −1 and letting b vary, and then fixing b = 0.95

and letting cz vary.

When cz = −1 is kept fixed but b varies, as shown on the horizontal axis of Figure

S.7, we see that changing b does not induce size distortions but that the power of

the test generally increases with b. Yet for alternative hypotheses that are further

away from the null (larger values of b12) the power is non monotonic in b: it tends to

decrease as b gets very close to 1. Hence, it is not optimal to set b too close to unity

(say, b = 0.99) and setting b = 0.95 seems appropriate.

Now, consider fixing b = 0.95 but letting cz vary, as reported on horizontal axis of

Figure S.8. The size of the test does not appear to be affected by the choice of cz but

its power is non-monotonic. Figure S.8 shows that setting cz = −1 yields reasonable

power across the alternatives considered.

5.6.2 Varying ρ

In Figure S.9, we also consider a range of values for ρ ∈ (−1, 1), while keeping c = −10.

To illustrate the size and power trade-off, we report the fixed alternative b12 = 1. This

value is chosen so that the power with our proposed choice of (b, cz) is close to 50%.

Figure S.9 shows that b = 0.95 induces good power at the cost of minor size distortion

over the whole range of values of ρ (here cz = −1).
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Figure S.7: Size and Power of the AR statistic as b varies while cz = −1 is being held
constant.

b
12

= 0 
b

12
= 1 

b
12

= 0.5 
b

12
= 2 

0.0

0.5

1.0

10 9 8 7 6 5 4 3 2 1 0

Size and Power of AR as c
z
 varies (b = 0.95), H

0
: b

12
 = 0, T = 200

c
z

b
12

= 0 
b

12
= 1 

b
12

= 0.5 
b

12
= 2 

Figure S.8: Size and Power of the AR statistic as cz varies while b = 0.95 is being held
fixed.
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Figure S.9: Size and power of the AR statistic for cz = −1 under varying b. The null
is H0 : b12 = 0 and the alternative is b12 = 1. The horizontal axis reports the value of
ρ and the vertical axis the rejection probability.
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Figure S.10 complements the simulations above by considering c = −1 and −100.

The fixed alternatives are b12 = 5 when c = −1, and b12 = 0.2 when c = −100. Again

b = 0.95 appears a satisfactory choice when cz = −1.

b = 0.55 b = 0.75 b = 0.95 b = 0.99 
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c = -100, cz = -1

Figure S.10: Size and power of the AR statistic for c ∈ {−1,−100} under varying b.
The null is H0 : b12 = 0 and the alternatives are b12 = 5 when c = −1 and b12 = 0.2
when c = −100. The horizontal axis reports the value of ρ and the vertical axis the
rejection probability.

In a similar way, Figure S.11 reports the size and power trade-off when b = 0.95

is being held constant and while cz ∈ {−10,−5,−1}. Setting cz = −1 appears a

reasonable choice overall.

5.6.3 Power over varying alternatives

We now extend the analysis further to consider, in Figure S.12, the power of the test

statistic when ρ = 0.2 or 0.95 (as in the paper) for values of c ∈ {−100,−10,−1}.
Figure S.12 presents the power plots of AR for the null H0 : b12 = 0 under alternative
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Figure S.11: Size and power of the AR statistic for cz ∈ {−10,−5,−1} when b = 0.95.
The null is H0 : b12 = 0 and the alternatives are b12 = 5 when c = −1, b12 = 1 when
c = −10, and b12 = 0.2 when c = −100. The horizontal axis reports the value of ρ and
the vertical axis the rejection probability.
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values b12. The figure reports the cases where b = 0.55, 0.75, 0.95 or 0.99, while keeping

cz = −1. The figure shows that setting b = 0.95 and cz = −1 appears to be a good

choice overall.
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Figure S.12: Power plots of the AR statistic as a function of b12 (horizontal axis) for
various choices of b (keeping cz = −1).

5.7 Implementation of Gospodinov’s (2010) method

In the Appendix of the paper, we report the power of a t test based on Gospodinov’s

(2010) estimator of b12 in an SVAR(2) model. Here we give the details of the imple-

mentation. Let φ̂ denote the OLS estimator of φ in the regression Y2t = µ+φY2,t−1 +et.

The coefficients Ψ1 are estimated by OLS in the system of equations

(I −Ψ1L)

[
1− L 0

0 1− φ̂L

]
Yt = ut.
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Namely, denoting Ỹt :=
(
I − Φ̂L

)
Yt, Ψ̂1 is simply obtained from a VAR(1) using OLS

on Ỹt = Ψ1Ỹt−1 + ut, i.e.,

Ψ̂1 =
∑
t

ỸtỸ
′
t−1

(∑
t

Ỹt−1Ỹ
′
t−1

)−1

.

Now,

vec
(

Ψ̂1 −Ψ1

)
=

(∑
t

Ỹt−1Ỹ
′
t−1

)−1

⊗ I2

 vec
∑
t

utỸ
′
t−1

=

(∑
t

Ỹt−1Ỹ
′
t−1

)−1

⊗ I2

∑
t

(
Ỹt−1 ⊗ ut

)

so, under homoskedasticity,

v̂ar
[√

Tvec
(

Ψ̂1

)]
=

(
1

T

∑
t

Ỹt−1Ỹ
′
t−1

)−1

⊗ Σ̂u

p→

[
∗ ∗
∗ Ξ

]
.

So, denoting by ψ = (ψ12, ψ22)′ = (−Ψ1,12, 1−Ψ1,22), we have

√
T
(
ψ̂ − ψ

)
d→ N (0,Ξ) ,

since var
(
ψ̂
)

= var

((
Ψ̂1,12, Ψ̂1,22

)′)
, where the estimator of Ξ easily obtains from

the previous formulae as the bottom right 2x2 block of(
1

T

∑
t

Ỹt−1Ỹ
′
t−1

)−1

⊗ Σ̂u,

with

Σ̂u =
1

T

∑
t

(
Ỹt − Ψ̂1Ỹt−1

)(
Ỹt − Ψ̂1Ỹt−1

)′
.
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Gospodinov’s (2010) estimator is b̂12 := ψ̂12/ψ̂22 = f
(
ψ̂
)

with

∂f

∂ψ′
=
[

1
ψ22

−ψ12

ψ2
22

]
:= F ′ψ.

Now, the Delta method yields

√
T
(
b̂

(0)
12 − b12

)
→d N

(
0, F ′ψΞFψ

)
from which we obtain a t-statistic for b12

t
b̃
(0)
12

=
√
T
b̂12 − b12√
F ′
ψ̂
Ξ̂Fψ̂

.

6 Supplementary material for empirical section

This section contains details of the computation algorithm of the confidence bands for

the IRFs using our proposed ARW method, and additional empirical results based on

different detrending methods and updated/extended data for the series used in the two

applications reported in the main paper.

6.1 Data

6.1.1 Blanchard and Quah (1989)

The data presented in the main paper are taken from Blanchard and Quah (1989) (BQ),

where the reader is referred to for detailed data description. Figure S.13 presents the

original Blanchard and Quah (1989) data.

We also provide results based on an extended data set that goes up to 2014q4. The

unemployment rate corresponds to men over the age of 20, and is seasonally adjusted

(series ID: LNS14000025). Real GNP is seasonally adjusted, and the source is the

Bureau of Economic Analysis (series ID: GNPC96). The data were obtained from the

St. Louis Fed database FRED. The updated data are presented in Figure S.14.
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Figure S.13: Original data used in Blanchard and Quah (1989)
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Figure S.14: Updated data for the series used in Blanchard and Quah (1989)
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Figure S.15: Original data used in Gaĺı (1999)

6.1.2 Hours debate

The data presented in the main paper are taken from Gaĺı (1999) and Christiano et

al. (2003), where the reader is referred to for detailed data description. Figure S.15

presents the Gaĺı (1999) data. The data used by Christiano et al. (2003) (CEV) is

presented in Figure S.16.

We also provide results based on an updated and extended data set that spans

the period 1948q1-2014q3, presented in Figure S.17. For the source and description

of the data, we followed CEV footnote 9 and obtained the data taken from the DRI

Economics database. The mnemonic for business labor productivity is LBOUT. The

mnemonic for business hours worked is LBMN. The business hours worked data were

converted to per capita terms using a measure of the civilian population over the age

of 16 (mnemonic, P16).
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Figure S.16: Original data used in Christiano et al. (2003)
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Figure S.17: Updated data for the series used in Christiano et al. (2003)
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6.2 Computational details

The projection based confidence bands for the IRF are computed as follows. Let

g (b12, ψ) denote a given impulse response of interest. ĝ (b12) = g
(
b12, ψ̂ (b12)

)
its

restricted estimate at b12, and σ̂ĝ (b12) the associated standard error computed using

the delta method.

The joint η-level confidence set for (b12, g) can be computed as follows. First, for

any given value of b12, the smallest value of the ARW statistic (12) is equal to AR (b12) ,

since at ĝ (b12) , W (b12) = 0. Therefore, the confidence set for g (b12, ψ) = b12 can be

computed simply by

Cb12 =
{
b0

12 ∈ < : AR
(
b0

12

)
< cη

}
, (S–28)

where cη is the 1−η quantile of the χ2
2 distribution. With conditional homoskedasticity,

this inversion can be done analytically using the formula given by Dufour and Taamouti

(2005). For a general g (b12, ψ) evaluated at any given point b12 = b0
12, the Wald

confidence interval is given by

ĝ
(
b0

12

)
± σ̂ĝ

(
b0

12

)√
cη − AR (b0

12). (S–29)

The upper and lower bounds of the projection-based confidence set for g are given by[
min

b012∈Cb12
g
(
b0

12

)
, max
b012∈Cb12

ḡ
(
b0

12

)]
. (S–30)

The procedure is repeated for each impulse response, using the same Cb12 , which is

common to all. Since g is smooth, we can use derivative-based optimization methods

to locate the extrema, which is what we do in our applications. It is advisable to use

more than one set of starting values to avoid getting stuck at local extrema. It is also

possible to find the extrema by grid search, but it is important to use a fine grid of

points in Cb12 , because the extrema of g (b0
12) and ḡ (b0

12) may occur at interior points

of Cb12 , and the functions g (·) and ḡ (·) could be very steep.

An alternative to the projection method is the Bonferroni method. This involves

combining an η1-level AR test with an η2-level Wald test for g. Thus, Cb12 is obtained

by replacing cη in (S–28) with the 1 − η1 quantile of the χ2
1 distribution (note the

difference also in degrees of freedom), and the term
√
cη − AR (b0

12) in (S–29) with the

1− η2/2 quantile of the standard normal distribution. The resulting interval in (S–30)
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Figure S.18: Estimates and confidence bands of the IRFs in CEV with recursive de-
trending using their original data.The solid line is the ML estimator. The dotted lines
are 90% Wald confidence intervals, and the dashed lines are the 90% projection ARW
confidence intervals.

thus obtained would have coverage at least 1− η1 − η2.

6.3 Robustness checks in the hours application

6.3.1 Recursive detrending of hours

The results in Figure 10 in the paper are based on the CEV levels specification with

non-detrended per capita hours. Those results are not robust to a trend in hours.

Using recursive detrending, we obtain results that are robust to a linear trend in hours

in Figure S.18. The results are entirely analogous to those without detrending, i.e., the

remain inconclusive regarding the sign of the effect of technology shocks on hours.
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Figure S.19: Adjusted hours in Francis and Ramey (2009)

6.3.2 Alternative detrending of hours

Francis and Ramey (2009) provide an alternative measure of hours per capita, which

removes low-frequency movements. See Figure S.19. We use their data of hours to

replace those used in Gaĺı (1999), and keep the other settings of Gaĺı (1999) to fa-

cilitate comparison, i.e., we restrict the sample period to 1948:1-1994:4, estimate an

SVAR(5) model by the long-run restriction with hours in level, and use the same data

of productivity as in Gaĺı (1999).

The resulting IRFs together with the robust confidence bands based on our pro-

posed ARW method and the non-robust confidence bands are reported in Figure S.20.

Though the IRF of technology shocks on hours is estimated to be negative, the un-

certainty is sufficiently large that the evidence regarding the sign of the effect remains

inconclusive.
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Figure S.20: Estimates and confidence bands of the IRFs from a SVAR with hours in
levels, using adjusted hours in Francis and Ramey (2009). The solid line is the ML
estimator. The dotted lines are 90% Wald confidence intervals, and the dashed lines
are the 90% projection ARW confidence intervals.
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Figure S.21: Estimates and confidence bands of the IRFs with extended CEV data and
recursive detrending. The solid line is the ML estimator. The dotted lines are 90%
Wald confidence intervals, and the dashed lines are the 90% projection ARW confidence
intervals.

6.3.3 IRFs with extended sample

With the extended sample and recursive detrending, the resulting IRFs from the levels

specification of CEV are presented in Figure S.21. The evidence on the sign of the

effect of technology shocks on hours remains inconclusive.

Difference specification with extended data Figure S.22 presents the results for

the difference specification in Gaĺı (1999) with per capita hours instead of total hours

and over the updated sample. The results are essentially the same as with his original

data (which used total instead of per capita hours).
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Figure S.22: Estimates and confidence bands of the IRFs with extended Gaĺı (1999)
data. The solid line is the ML estimator. The dotted lines are 90% Wald confidence
intervals, and the dashed lines are the 90% projection ARW confidence intervals.
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Figure S.23: Estimates and confidence bands of the IRFs with CEV data and the
difference specification. The solid line is the ML estimator. The dotted lines are 90%
Wald confidence intervals, and the dashed lines are the 90% projection ARW confidence
intervals.

6.3.4 Difference specification with original CEV data

Finally, we use the original CEV data but consider the difference specification instead

of the level specification of hours in CEV. The resulting IRFs are presented in Figure

S.23.

Both Figure S.22 and Figure S.23 show that identification is not weak when hours

appears in first differences, and the short run effect of a technology shock on hours is

significantly negative.
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7 Articles that use SVARs in Top Journals, 2005-

2014

Table S.8 lists the articles that used SVARs and were published in the following eight

journals during the period 2005-2014: American Economic Review, Econometrica,

Journal of Political Economy, Quarterly Journal of Economics, Review of Economic

Studies, American Economic Journal - Macroeconomics, Journal of Monetary Eco-

nomics and Journal of Money, Credit and Banking.
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With long-run restrictions Without long-run restrictions

1 (Alvarez and Jermann 2005) (Iwata and Wu 2005)
2 (Bernanke, Boivin, Doan, and Eliasz 2005) (Kim 2005)
3 (Francis and Ramey 2005) (Primiceri 2005)
4 (Orphanides and Van Norden 2005) (Uhlig 2005)
5 (Beaudry and Portier 2006) (Ashcraft 2006)
6 (Chang and Hong 2006) (Basu, Fernald, and Kimball 2006)
7 (Cover, Enders, and Hueng 2006) (Braun and Shioji 2006)
8 (Croushore and Evans 2006) (Farrant and Peersman 2006)
9 (Fisher 2006) (Mitra 2006)
10 (Lastrapes 2006) (Sims and Zha 2006)
11 (Reis 2006) (Dedola and Neri 2007)
12 (Aguiar-Conraria and Wen 2007) (Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson 2007)
13 (Avouyi-Dovi and Matheron 2007) (Maćkowiak 2007)
14 (Evans and Marshall 2007) (McCarthy and Zakraǰsek 2007)
15 (Fernald 2007) (Miniane and Rogers 2007)
16 (King and Morley 2007) (Olivei and Tenreyro 2007)
17 (Liu and Phaneuf 2007) (Roush 2007)
18 (Marchetti and Nucci 2007) (Benati 2008)
19 (Michelacci and Lopez-Salido 2007) (Bilbiie, Meier, and Müller 2008)
20 (Morley 2007) (Gambetti, Pappa, and Canova 2008)
21 (Ravenna 2007) (Lanne and Lütkepohl 2008)
22 (Chari, Kehoe, and McGrattan 2008) (Mertens 2008)
23 (Corsetti, Dedola, and Leduc 2008) (Altavilla and Ciccarelli 2009)
24 (Hansen, Heaton, and Li 2008) (Benati and Surico 2009)
25 (Bjørnland and Leitemo 2009) (Boivin, Giannoni, and Mihov 2009)
26 (Dupor, Han, and Tsai 2009) (Carlstrom, Fuerst, and Paustian 2009)
27 (Fève and Guay 2009) (Del Negro and Schorfheide 2009)
28 (Francis and Ramey 2009) (Evans and Marshall 2009)
29 (Gambetti and Gaĺı 2009) (Kilian 2009)
30 (Lorenzoni 2009) (Danthine and Kurmann 2010)
31 (Fève, Matheron, and Sahuc 2010) (Elder and Serletis 2010)
32 (Forni and Gambetti 2010) (Kuester 2010)
33 (Rubio-Ramirez, Waggoner, and Zha 2010) (Monacelli, Perotti, and Trigari 2010)
34 (Beaudry, Collard, and Portier 2011) (Barsky and Sims 2011)
35 (Paciello 2011) (Born and Müller 2012)
36 (Bachmann and Sims 2012) (Ravn, Schmitt-Grohé, and Uribe 2012)
37 (Collard and Dellas 2012) (Barakchian and Crowe 2013)
38 (Corsetti and Konstantinou 2012) (Baumeister and Peersman 2013)
39 (Bekaert, Hoerova, and Duca 2013) (Cloyne 2013)
40 (Blanchard, L’Huillier, and Lorenzoni 2013) (Jang 2013)
41 (Keating 2013) (Kurmann and Otrok 2013)
42 (Forni and Gambetti 2014) (Leeper, Walker, and Yang 2013)
43 (Kano and Nason 2014) (Mertens and Ravn 2013)
44 (Kurmann and Mertens 2014) (Mumtaz and Zanetti 2013)
45 (Mertens and Ravn 2014)
46 (Monnet 2014)
47 (Nickel and Tudyka 2014)
48 (Walentin 2014)

Table S.8: The table lists SVAR articles in the top 8 macro journals over the period
2005-2014.
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Gambetti, L. and J. Gaĺı (2009). On the sources of the Great Moderation. American

Economic Journal: Macroeconomics 1 (1), 26–57.

Gambetti, L., E. Pappa, and F. Canova (2008). The structural dynamics of US

output and inflation: What explains the changes? Journal of Money, Credit and

Banking 40 (2-3), 369–388.

Giraitis, L. and P. C. B. Phillips (2006). Uniform limit theory for stationary autore-

gression. Journal of Time Series Analysis 27, 51–60.

Giraitis, L. and P. C. B. Phillips (2012). Mean and autocovariance function estima-

tion near the boundary of stationarity. Journal of Econometrics 169 (2), 166–178.

Hansen, L., J. Heaton, and N. Li (2008). Consumption strikes back? Measuring

long-run risk. Journal of Political Economy 116 (2), 260–302.

Iwata, S. and S. Wu (2005). What macroeconomic risks are (not) shared by inter-

national investors? Journal of Money, Credit, and Banking 37 (6), 1121–1141.

Jang, K. (2013). Alternative maximum likelihood estimation of structural vector

autoregressive models partially identified with short-run restrictions. Journal of

Money, Credit and Banking 45 (2-3), 465–476.

Kano, T. and J. M. Nason (2014). Business cycle implications of internal con-

sumption habit for new Keynesian models. Journal of Money, Credit and Bank-

ing 46 (2-3), 519–544.

Keating, J. W. (2013). Interpreting permanent shocks to output when aggregate

demand may not be neutral in the long run. Journal of Money, Credit and Bank-

ing 45 (4), 747–756.

Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply

shocks in the crude oil market. American Economic Review 99 (3), 1053–69.

Kim, S. (2005). Monetary policy, foreign exchange policy, and delayed overshooting.

Journal of Money, Credit, and Banking 37 (4), 775–782.

64



King, T. B. and J. Morley (2007). In search of the natural rate of unemployment.

Journal of Monetary Economics 54 (2), 550–564.

Kostakis, A., T. Magdalinos, and M. P. Stamatogiannis (2015). Robust econometric

inference for stock return predictability. Review of Financial Studies 28 (5), 1506–

1553.

Kuester, K. (2010). Real price and wage rigidities with matching frictions. Journal

of Monetary Economics 57 (4), 466–477.

Kurmann, A. and E. Mertens (2014). Stock prices, news, and economic fluctuations:

Comment. American Economic Review 104 (4), 1439–1445.

Kurmann, A. and C. Otrok (2013). News shocks and the slope of the term structure

of interest rates. American Economic Review 103 (6), 2612–2632.

Lanne, M. and H. Lütkepohl (2008). Identifying monetary policy shocks via changes

in volatility. Journal of Money, Credit and Banking 40 (6), 1131–1149.

Lastrapes, W. D. (2006). Inflation and the distribution of relative prices: The role

of productivity and money supply shocks. Journal of Money, Credit, and Bank-

ing 38 (8), 2159–2198.

Leeper, E. M., T. B. Walker, and S.-C. S. Yang (2013). Fiscal foresight and infor-

mation flows. Econometrica 81 (3), 1115–1145.

Liu, Z. and L. Phaneuf (2007). Technology shocks and labor market dynamics: Some

evidence and theory. Journal of Monetary Economics 54 (8), 2534–2553.

Lorenzoni, G. (2009). A theory of demand shocks. American Economic Review 99 (5),

2050–2084.
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