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Abstract

This paper studies the properties of iterated and direct multistep forecasting

techniques in the presence of in-sample location shifts (breaks in the mean).

It also considers the interaction of these techniques with multistep intercept

corrections that are designed to exhibit robustness to the shifts. In a local-

asymptotic parameterization for the probability of breaks, we provide analyt-

ical expressions for forecast biases and mean-square forecast errors. We also

provide simulations which show that breaks provide a rationale for using other

methods than iterated multistep. In particular, we study how the relative

accuracy of the methods relates to the forecast horizon, the sample size and

the timing of the shifts. We show that direct multistep forecasting provides

forecasts that are relatively robust to breaks and that its benefits increase

with the forecast horizon. In an empirical application, we revisit an oft-used

dataset of G7 macroeconomic series and corroborate our theoretical results.

Keywords: Multistep forecasting, Location Shifts, Local Asymptotics, Inter-

cept Correction.
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1 Introduction

When a forecaster wishes to forecast at several, say h > 1, periods into the future, she is

faced with a choice between iterating one-step ahead forecasts (iterated multistep, IMS) or

directly modeling the relation between the end-of-sample observation and its hth successor

in order to forecast the latter (direct multistep, DMS). The direct technique has a long pedi-

gree but it was originally thought that it brought little benefit, until Weiss (1991) found

asymptotic relevance in matching estimation and forecast efficiency criteria, in particular

in the presence of model misspecification. From then, many authors have produced theo-

retical analyses. In particular Tiao and Xu (1993), Clements and Hendry (1996), Chevillon

and Hendry (2005) and Proietti (2011) studied misspecified ARIMA processes, Bhansali

(1996, 1997), Brodsky and Hurvich (1999) and Bhansali and Kokoszka (2002) analyzed

long memory processes, Haywood and Tunnicliffe-Wilson (1997) and McElroy and Wildi

(2013) focused on the frequency domain, Schorfheide (2005) allowed for asymptotically

vanishing misspecification. More recently Findley, Pötscher, and Wei (2004), Ing (2003,

2004) and Ing, Lin and Yu (2009) derived results for very general settings, see Elliott and

Timmermann (2008) for an exposition of the problem and Chevillon (2007) for a survey

of the literature.

These theoretical studies have spurred a number of empirical analyses of the relative

merits of IMS and DMS forecasting. While Tsay (1993) and Tiao and Tsay (1994) find

significant benefits in using DMS, many have concluded, like Weiss (1991), that the theo-

retical benefits do not appear clearly in practice, see e.g. the references in Chevillon (2007)

as well as the more recent evidence in Eklund and Karlsson (2005), Marcellino, Stock, and

Watson (2006), Jordà and Marcellino (2010), Schumacher and Breitung (2008) and Pe-

saran, Pick, and Timmermann (2011). Many authors who find evidence against DMS tend

to use post-war U.S. data. By contrast Aron and Muellbauer (2002) and Chevillon (2009)

perform forecast comparisons using South African data and find substantial evidence in

favor of DMS. In light of existing theoretical results, one of the possible explanations put

forward by Aron and Muellbauer (2002) for the relative success of DMS in South Africa

relates to model instability.1 Indeed, several theoretical analyses point towards determin-

1This does not preclude that models for the US have also experienced instabilities in the second half of
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istic shifts as a potential source for the success of DMS in finite samples, e.g. Peña (1994)

for breaks, Bhansali (1997) whose framework of long memory can be seen in the light

of Diebold and Inoue (2001) and Perron and Qu (2007) as relevant for regularly occur-

ring shifts, and Chevillon and Hendry (2005) for negative serial correlation that could be

induced by occasional location shifts.

Hence, we propose in this paper to analyze the theoretical properties of DMS forecast-

ing in the presence of breaks. Clements and Hendry (1999, 2006) note that the class of

breaks most detrimental to the forecast accuracy of econometric models is that of deter-

ministic shifts, and the most pernicious are location, or intercept, shifts which are often

modeled by step dummies. This result has been confirmed by Pesaran and Timmermann

(2005) and Pesaran et al. (2011). In view of this evidence, we focus in this paper on breaks

that affect the unconditional expectation and we parameterize them as arising from a shift

in the intercept of an autoregressive process.

The present paper mostly relates to Pesaran and Timmermann (2005), referred to as

PT. The differences are that these authors consider one-step forecasts under general mod-

els, AR(p) data generating processes (DGP) and various types of breaks. Here we focus

in the theory on an AR(1) DGP that undergoes intercept shifts and consider forecasting

from estimated AR(p) models; we address the issue of multistep forecasts via iterated and

direct methods. The location shifts that we consider are occasional and it seems reason-

able to assume that there are few of these, if any, in a sample consisting of, say, less than

a hundred observations. We hence resort to a local asymptotic parameterization proposed

by Leipus and Viano (2003) and used also by Diebold and Inoue (2001) and Perron and

Qu (2007): we specify the probability of a shift at every period as a function of the ob-

servable sample and analytically derive the distributions of estimators of forecasts that

result. As a complement to PT, we are hence able to provide analytical results both on

the forecast bias and the mean-square forecast error whereas PT only compute the latter

via simulation. Also, we assess the properties of intercept correction since this method is

designed specifically to achieve some robustness to this sort of break.

The conclusion of this paper is that there exists a rationale for direct multistep esti-

the 20th century: see e.g. the discussion in Stock and Watson (2004) and Clark and McCracken (2008).
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mation and forecasting in the presence of breaks. In particular the benefits in using DMS

are stronger at longer horizons when the break is relatively recent. It is also worth using

DMS forecasting under estimated autoregressive models of moderate order. The empirical

analysis shows that DMS performs at least as well as IMS in more than 50% of the cases

considered. By contrast, our results do not find any systematic benefits from intercept

correction at multistep horizons.

The plan of this paper is as follows: we first describe the data generating process and

consider the properties of estimators. We then provide analytical results for the resulting

forecasts. Section 4 presents simulation results. In Section 5, we proceed to an empirical

application. Additional extensive empirical results are reported in a supplement available

from the author’s website. Throughout the paper we use the following notation: for any

real numbers a and b, a ∧ b and a ∨ b denote respectively the minimum and maximum of

a and b; bxc denotes the integer part of any real scalar x.

2 The Data Generating Process and Estimators

This section defines a univariate data generating process (DGP) which allows for stochastic

location shifts. We then consider the distributions of least squares estimators.

2.1 A model of stochastic breaks

We consider for our analysis the suggestion of infrequent shocks by Balke and Fomby

(1991) and frame it within a local-asymptotic parameterization which has also been used

by Diebold and Inoue (2001) in the context of long memory, Perron and Qu (2007) who

study the properties of the correlogram in the presence of shifts, and Chevillon (2015)

for modeling weak deterministic trends. The data generating process is autoregressive of

order one, AR(1), with a random intercept:

yt = τt + ρyt−1 + εt, (1)
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for t = 1, ..., T + h and where the error process εt is white noise with variance σ2ε . Here τt

is written as the partial sum of an i.i.d. process:

τt =

t∑
i=1

qivi, (2)

where νt ∼ iid
(
0, σ2v

)
, qt

iid∼ Bernoulli (πT ), and qi, vj are independent for all i and j.

The variable qt which follows a Bernoulli distribution indicates whether a break occurs at

time t, and νt represents the magnitude of the break at that instant. The probability that

a break occurs is parameterized as πT , a function of the sample size. This implies that

the process under consideration is a triangular array as has been commonly assumed in

the econometric literature in the context of Pitman drifts and near-unit root asymptotics

(since Bokboski, 1983, Phillips, 1987, and Chan and Wei, 1987). In practice, we assume

that there exists π ∈ (0, T ) such that

πT =
π

T
, (3)

so π is the expected number of breaks in a sample of T observations. Condition (3) ensures

that τt satisfies a functional central limit theorem (FCLT). Leipus and Viano (2003) and

Georgiev (2002) show that, for r ∈ [0, 1]

τbrT c ⇒ J (r) , (4)

where2 J is a compound Poisson process with jump intensity π defined as J (r) =
∑N(r)

i=1 vi,

with N (r) a counting process which has on average as many jumps as τbrT c.

An important modification to the previous FCLT, expression (4), is to work under

the condition that at least one break occurs in a sample of T observations. Georgiev also

proved the convergence of τbrT c conditional on knowing the timing and/or the number

of breaks. He shows that it possible to replace expression (4) with a different compound

Poisson process. In this paper, the event we consider is the following:

Eck : {qi} = 1{i=bckT c},

for ck ∈ (0, 1) and where 1{·} denotes the indicator function. We denote the realization:

vbckT c = γ.

2⇒ denotes weak convergence of the associated probabiility measure under the Skorokhod topology.

5



Working under event Eck allows to analyze the impact of the timing of the break. The

variance of vt then plays no role since qtvt is identically zero except at t = bckT c . The

corresponding distribution is

τ[rT ]|Eck ⇒ J+ (r) .

Under the conditions above, Georgiev (2002, Corollary 5 and Example 1) proves the joint

convergence:
T−1

∑T
t=1 yt

T−1
∑T

t=1 y
2
t

T−1
∑T

t=1 yt−1yt

⇒


1
1−ρ

∫ 1
0 J (r) dr

σ2
ε

1−ρ2 + 1
(1−ρ)2

∫ 1
0 J

2 (r) dr

ρσ2
ε

1−ρ2 + 1
(1−ρ)2

∫ 1
0 J

2 (r) dr

 ,
with corresponding distributions conditional on event Eck , replacing J with J+.

2.2 Estimators

We consider the so-called direct multi-step (DMS) estimators (τ̃h, ρ̃h) obtained by ordinary

least-squares (OLS) projection of yt on an intercept and its hth lag, yt−h, for h ≥ 1. When

h = 1, the estimators reduce to the standard OLS of an AR(1) , which we denote by (τ̂ , ρ̂) .

To derive the asymptotic distribution of the DMS estimators, we express the horizon h as

a fraction of the sample size, i.e. letting

h = bchT c .

In the absence of breaks, the intercept τt is constantly zero, so the correct model is an

AR(1) without drift and (τ̃h, ρ̃h)
p→
(
0, ρh

)
(with distribution given in, e.g., Chevillon and

Hendry, 2005) Under the DGP delineated above, by contrast, the asymptotic distribution

of the estimators is given by the following proposition:

Proposition 1 Assume the DGP is given by (1), (2) and (3), and that one or more shifts

almost surely occur. The OLS estimators of the projection of yt on (1, yt−h) satisfy:

· if h = 1, τ̂

ρ̂− ρ

⇒
 1

∫ 1
0 J(r)dr

1−ρ∫ 1
0 J(r)dr

1−ρ
σ2
ε

1−ρ2 +
∫ 1
0 J

2(r)dr

(1−ρ)2

−1  ∫ 1
0 J(r)dr

1−ρ∫ 1
0 J

2(r)dr

(1−ρ)2

 ;

6



· if h = bchT c , τ̃h

ρ̃h − ρh

⇒
 1− ch

∫ 1−ch
0 J(r)dr

1−ρ∫ 1−ch
0 J(r)dr

1−ρ
σ2
ε (1−ch)
1−ρ2 +

∫ 1−ch
0 J2(r)dr

(1−ρ)2

1  ∫ 1−ch
0 J(r+ch)dr

1−ρ∫ 1−ch
0 J(r)J(r+ch)dr

(1−ρ)2

 ,
with corresponding distributions conditional on event Eck , replacing J with J+.

Conditionally on Eck , the asymptotic distributions of the estimators are nonstochastic

and we denote them as:3

(τ̂ , ρ̂)
p→

T→∞
(τ̂∞, ρ̂∞) , and (τ̃h, ρ̃h)

p→
T→∞

(τ̃∞,ch , ρ̃∞,ch) .

We define µy = γ/ (1− ρ) = limh→∞ E [yT+h|Eck ] the post-break long-run mean of yt, and

σ2y = σ2ε /
(
1− ρ2

)
. The following corollary provides the limits of the estimators.

Corollary 2 The asymptotic limits given in Proposition 1 conditional on event Eck write τ̂∞

ρ̂∞

 =

 1 ckµy

ckµy σ2y + ckµ
2
y

−1  ckµy

ρσ2y + ckµ
2
y

 ,
and τ̃∞,ch

ρ̃∞,ch

 =

 1− ch [(ck − ch) ∨ 0]µy

[(ck − ch) ∨ 0]µy [(ck − ch) ∨ 0]µ2y

−1  [((1− 2ch) ∧ (ck − ch)) ∨ 0]µ2y

((1− ch) ∧ ck)µy

 .
The expression from the previous corollary are difficult to interpret, so we next turn to

the two limiting situations where the horizon is small relative to the sample size or where

the break occurs toward the very end of the sample.

Corollary 3 Under the assumptions of Proposition 1, and the notations of Corollary 2,

the asymptotic distributions of the estimators satisfy, conditionally on Eck :

(i) As ck → 0, (τ̂∞, ρ̂∞) ∼ (γck, ρ) ,

and if ck < ch, (τ̃∞,ch , ρ̃∞,ch) ∼
(
µy

ck
1−ch , 0

)
.

(ii) As ch → 0 such that ch < ck, (τ̃∞,ch , ρ̃∞,ch) ∼
(
µy,

µ2y
σ2
y

)
ck.

The corollary shows that when the break occurs toward the very end of the sample, it

does not affect the one-step OLS estimators which are then consistent. By contrast the

multistep estimators are affected. When the horizon is very small relative to the sample

3We assume a projection facility, see Marcet and Sargent (1989), such that the modeler changes the

sample if the estimated parameter ρ̂ ≥ 1 to ensure that |ρ̂| < 1.
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size, the multistep intercept estimator tends to the unconditional expectation of the sample

mean of yt, weighted by the number of observations used in the multistep estimation. The

slope estimator is then nonzero but is a function of the ratio of the squared expectation

of yT over its variance.

3 Forecasts

We now consider the implications of previous results for the distributions of forecasts at

horizon h > 1. We compare four forecasting techniques. Two are based on the AR(1),

but with different estimation methods: the forecasts obtained from rolling forward using

the estimators (τ̂ , ρ̂) are referred to as iterated multistep (IMS). Alternatively, Direct

Multistep (DMS) forecasts are based on using (τ̃h, ρ̃h). In the light of Pettenuzzo and

Timmermann (2011) who confirm Clements and Hendry (2006) and Giacomini and Rossi

(2009) in emphasizing the importance of model instability over parameter estimation and

model uncertainty for forecast breakdowns, it appears that multistep intercept correction

could yield substantial forecast accuracy improvements at short horizon.

Two additional methods are examined: their aim is to put the forecast ‘back on track’

(i.e. reducing or suppressing the forecast bias) by adding to the forecasts from the previous

two models the differences between the observed forecast origin and its in-sample fitted

values from the estimated models. See Hendry, 2005, for an analysis of its use in forecasting

with econometric models and Clark and McCracken, 2008, for an extensive study of their

empirical benefits and that of variants thereof. We refer to these methods as one-step

and multistep intercept corrections depending which sample residuals are used. One-step

intercept correction necessarily uses the one-step model on which IMS is based (and we

refer to it as IC), whereas multistep can relate to either of IMS or DMS (hence denoted by

IMSIC or DMSIC).

Throughout, we assume that the horizon is less than T/2 so h < T − h. We compute

distributions conditionally on Eck and assume it implicit when we refer to the mean-square

forecast errors (MSFE). As the results depend on the magnitude of the break vis-à-vis the
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standard deviation of the errors, we define the following ratio:

λ = µ2y/σ
2
y . (5)

3.1 IMS and DMS Forecasts

We first consider the situation where the process, absent the location shifts, is correctly

specified as an AR(1) (if ρ 6= 0).

The iterated multistep ahead forecasts are obtained from the OLS estimators: ŷT+h|T =

ρ̂{h}τ̂+ ρ̂hyT , where ρ̂{h} =
∑h−1

j=0 ρ̂
j . The resulting forecast errors êT+h|T = yT+h− ŷT+h|T

are equal to:

êT+h|T = ρ{h}τT − ρ̂{h}τ̂︸ ︷︷ ︸
intercept

estimation

+
(
ρh − ρ̂h

)
yT︸ ︷︷ ︸

slope

estimation

+
h−1∑
i=0

ρi (τT+h−i − τT )︸ ︷︷ ︸
future breaks

+
h−1∑
i=0

ρiεT+h−i︸ ︷︷ ︸
future errors

,

which we have decomposed into the effects of the estimation uncertainty surrounding

multistep intercept and slope parameters, the impact of future breaks and of future errors.

Since the shifts are independent over time and uncorrelated with the errors εt, the impact of

future breaks is orthogonal to the other elements. Hence we assume for forecast comparison

that there are no breaks over the forecast horizon, i.e. setting τT+i = τT for all i > 1.

The DMS forecasts are generated as

ỹT+h|T = τ̃h + ρ̃hyT ,

with corresponding forecast errors ẽT+h|T = yT+h − ỹT+h|T . The latter differ from êT+h|T

only via intercept and slope estimation errors (which may interact with the forecasting

origin, see Ing, 2004). Conditional on event Eck , the forecast origin satisfies:

yT
L→

T→∞
N

(
J+ (1)

1− ρ
, σ2y

)
.

We define the random variable with zero conditional mean:

Y = lim
T→∞

(
yT −

J+ (1)

1− ρ

)
. (6)
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so that we can write that conditional on Eck ,

yT ⇒
J+ (1)

1− ρ
+ Y.

Conditional on Eck , we saw previously that the estimators converge towards a nonstochastic

limit. The following proposition formulates our results concerning the conditional moments

of the forecast errors.

Proposition 4 Under the assumptions of Proposition 1, the moments of the forecast er-

rors, conditional on Eck , satisfy as T →∞,

E
(
êT+h|T |Eck

)
→ µy −

τ̂∞
1− ρ̂∞

, Var
(
êT+h|T |Eck

)
→ σ2y ;

and,

if ch < ck : E
(
ẽT+h|T |Eck

)
→ µy (1− ρ̃∞,ch)− τ̃∞,ch , Var

(
ẽT+h|T |Eck

)
→
(
1 + ρ̃2∞,ch

)
σ2y ,

if ck ≤ ch : E
(
ẽT+h|T |Eck

)
→ µy

(
0 ∨

(
1− ck

1−ch

))
, Var

(
ẽT+h|T |Eck

)
→ σ2y .

3.2 Intercept corrections

The modeler may suspect that a break has occurred. She could base her ‘suspicion’ either

on her knowledge of breaks in other parts of the economy or, reasonably, on a break

test. Difficulties arise if she is to use the result of her test in her forecasting model:

as mentioned in Pesaran and Pick (2011), she needs an accurate estimate of the break

date, break amplitude, and possibly the nature of the break (in the intercept, first-order

autocorrelation...). Given that break tests such as Bai and Perron (1998) require trimming

at the beginning and end of the sample, the uncertainty surrounding the break may be

substantive in finite samples and the resulting forecasts of poor quality, see Elliott (2005)

and Paye and Timmermann (2006), which we confirm in Section 5. Hence, as discussed in

Clark and McCracken (2008), the modeler might prefer to resort to robust methods that

do not need information about the breaks: she may for instance wish to intercept-correct

the model to produce a more robust or less biased forecast, see Clements and Hendry

(1998), Chapter 8. An alternative would be to use break techniques that do not require

trimming, as for instance the Impulse Indicator Saturation (IIS) method of Santos, Hendry,
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and Johansen (2008) and Johansen and Nielsen (2009). Yet, timing the shift always results

in uncertainty.

Hence, if the forecaster has no hypothesis about the date of the break, then she may

resort to intercept correction (IC) based on the latest observation, i.e. using the correction

δIC = yT − ŷT |T−1. This yields the one-step IC forecast error:

êICT+1|T = yT+1 − ŷICT+1|T = yT+1 −
(
ŷT+1|T + δIC

)
,

where δIC = τT − τ̂ + (ρ− ρ̂) yT−1 + εT . Rolling forward the correction leads to the IMSIC

forecast: ŷIMSIC
T+1|T = ŷICT+1|T , and for h ≥ 2 : ŷIMSIC

T+h|T = τ̂ + ρ̂ŷIMSIC
T+h−1|T in which case

δIMSIC = ŷIMSIC
T+1|T − ŷT+1|T = ρ̂h−1δIC . (7)

A natural extension in the context of DMS forecasting is to generate the forecast ỹDMSIC
T+h|T =

ỹT+h|T + δDMSIC using the correction:

δDMSIC = yT − ỹT |T−h =

h−1∑
j=0

ρjτT−j − τ̃h +
(
ρh − ρ̃h

)
yT−h +

h−1∑
j=0

ρjεT−j . (8)

Absent the issue of parameter estimation (i.e. if the parameters were known), the point of

intercept correction is to provide unbiased forecasts under location shifts. Yet, parameter

estimation may induce biases as the following proposition shows.

Proposition 5 Under the assumptions of Proposition 1, the moments of the forecast er-

rors, conditional on Eck , satisfy as T →∞ :

E
(
êIMSIC
T+h|T |Eck

)
→ µy −

τ̂∞
1− ρ̂∞

, and V
(
êIMSIC
T+h|T |Eck

)
→ σ2y .

and

E
(
ẽDMSIC
T+h|T |Eck

)
→ 0, and Var

(
ẽDMSIC
T+h|T |Eck

)
→


(
1 + 2ρ̃2∞,ch

)
σ2y , if ch < ck,

σ2y , if ck ≤ ch.

The proposition shows that DMSIC is asymptotically unbiased and that the MSFE of

IMSIC does not depend on the horizon ch. Also, IMSIC controls the variance of the forecast

error. So does DMSIC, but only at long horizons (relative to k).
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3.3 Forecast accuracy comparisons

We now consider the implications of the previous propositions for the asymptotic con-

ditional MSFEs which we denote MSFEa∞ where a ∈ {IMS,DMS, IMSIC,DMSIC}

denotes the technique. Propositions 4 and 5 show that MSFEIMS
∞ and MSFEIMSIC

∞ do

not depend on the forecast horizon ch and, crucially that, as γ → ∞, all MSFEs diverge

except MSFEDMSIC
∞ which tends to

MSFEDMSIC
∞ →

γ→∞

[
1 + 2

(
1− ch

1− ck

)2
]
σ2y <∞. (9)

Hence DMSIC constitutes a technique that is robust to large breaks. DMS also shares the

same property, but only when ck ≤ ch. Indeed as γ → ∞ the bias of DMS becomes zero

but its second moment is only finite when ρ̃∞ → 0, i.e. if ck ≤ ch, in which case:

MSFEDMS
∞ →

γ→∞, ck≤ch
σ2y .

Now, considering medium-sized breaks, so µ2y and σ2y have similar magnitudes, the follow-

ing corollary provides a comparison when either ck → 0 or ch → 0.

Corollary 6 Under the assumptions of Proposition 1, the asymptotic conditional MSFEs

satisfy,

MSFEIMS
∞ = MSFEIMSIC

∞ =
[
1 + λ (1− ck)2

]
σ2y ,

As ck → 0 with ch ≥ ck :

MSFEDMS
∞ ∼

ck→0

[
1 +

(
1− ck

1−ch

)2
λ

]
σ2y , and MSFEDMSIC

∞ ∼
ck→0

σ2y ;

as ch → 0 with ck > ch :

MSFEDMS
∞ ∼

ch→0

(
1 +

(
1− 1

1+(1−ck)ckλ

)2
+
[
1− λ

1+(1−ck)ckλ (1− ck) ck
]2

(1− ck)2 λ
)
σ2y ,

MSFEDMSIC
∞ ∼

ch→0

(
1 + 2 λ2

[1+(1−ck)ckλ]2
c2k

)
σ2y .

The corollary allows to compare the MSFEs under the two limits. First, for recent

breaks, as ck → 0 it must hold that ck/ (1− ch) becomes smaller than unity; hence the

following ranking

ck → 0 : MSFEDMSIC
∞ < MSFEDMS

∞ ≤ MSFEIMS
∞ = MSFEIMSIC

∞ , (10)
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where equality between MSFEDMS
∞ and MSFEIMS

∞ holds in the limit for ck = 0. This shows

that direct multi-step techniques are to be preferred in the presence of recent breaks.

Now considering the horizon, the corollary shows that as ch → 0, the actual value of

the horizon does not matter for the MSFEs. The bias-variance trade-off is apparently

difficult to assess from the formulae since it depends on the relative magnitudes of µ2y and

σ2y . Indeed in terms of bias, DMSIC is most accurate since it is asymptotically unbiased,

then DMS then IMS and IMSIC; the ordering is reversed in terms of variance. As ch → 0,

if (1− ck) ckλ >> 1, i.e. the break is large and does not occur towards the very beginning

or end of the sample, then

MSFEDMS
∞ ∼

ch→0

[
1 +

(
1− 1

(1− ck) ckλ

)2
]
σ2y ,

MSFEDMSIC
∞ ∼

ch→0

(
1 + 2

1

(1− ck)2 λ2

)
σ2y .

This implies the following ordering as ch → 0,

(1− ck) ckλ >> 1 : MSFEDMSIC
∞ ≤

ch→0
MSFEDMS

∞ ≤
ch→0

MSFEIMS
∞ =

ch→0
MSFEIMSIC

∞ . (11)

Now for breaks that are small, very recent or that occur at the beginning of the sample,

so (1− ck) ckλ << 1, then

MSFEDMS
∞ ∼

ch→0

[
1 + [1− (1− ck) ckλ]2 (1− ck)2 λ

]
σ2y ,

MSFEDMSIC
∞ ∼

ch→0

(
1 + 2λ2c2k

)
σ2y .

This implies that MSFEDMS
∞ is smaller than MSFEIMS

∞ but only marginally so since

[1− (1− ck) ckλ]2 ≈ 1. And then DMSIC is only more accurate than the other techniques

if λ < 1
2

(
1−ck
ck

)2
. Hence, for small shifts, all methods are approximately equivalent, with

a slight advantage to DMSIC and possibly DMS.

The analysis above shows that the possibility of location shifts provides a rationale for

deviating from IMS and using models that reduce the forecast bias.

13



3.4 Higher order autoregressions

The AR(1) model above is restrictive. A natural extension consists in considering estima-

tion and forecasting using a more general, possibly misspecified, AR(p), model. We derive

in a supplementary appendix results for the situation where the estimated model is either

an AR(2) or an AR(p) with long lag order p = bcpT c , cp < ck (see Bhansali, 1993, who

provides a rationale for such models in the context of DMS).

We show that, in the presence of unmodeled location shifts, estimating a model which

uses more lags is profitable in terms of forecast accuracy as this yields more degrees of

freedom to capture the dynamics induced by the breaks. Benefits from long lag regressions

are crucially only present if large unmodeled location shifts occur. If the shifts are present

but small, then forecast errors may diverge under an estimated AR(bcpT c) . Overall a

forecaster may wish to consider increasing the lag order by a small amount, but she

should resist using long lags.

4 Summary of simulations

This section summarizes Monte Carlo simulations and robustness checks which are re-

ported in a supplementary appendix. The simulation setting considers an AR(1) DGP

with stochastic breaks whose expected frequency π = 1 or 5 per sample. We consider

parameter combinations of (γ, ρ) ∈ (0, 4] × [−.9, .9] . The errors εt are Gaussian and we

also allow them to follow an unmodeled MA(1) with parameter θ ∈ (−1, 1) . Forecasts are

computed over horizons of h = 1, 5, and 10 periods using an estimated AR(p) model with

p ∈ {1, 2, 4} over a sample of T = 50 and 100 observations. We also considered fixing the

break date T − k to see its impact on relative forecast accuracy.

At horizon h = 1, intercept correction seems to perform its purpose of “anchoring”

the forecasts (as in our unreported derivations with an estimated AR(p) model where the

non intercept corrected forecasts errors may be large). At intermediate horizon, h = 5,

IMS performs best overall, except when the process yt is very persistent. By contrast at

h = 10, DMS performs best for a wider range of parameter values, in particular for large

γ and |ρ|.
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The conclusions from the simulations are that the relative performance of DMS im-

proves with the horizon and the magnitude of recent shifts, and also when the model used

for forecasting is an AR(p) of moderate order (relative to the forecast horizon): here the

AR(2) is sufficient but the AR(4) often proves too large an order. Considering intercept

correction, we find that for it to put the forecast ‘back on track’ via IMSIC requires also

a correct specification of the underlying dynamics. DMSIC is more robust in this context.

Yet, the forms of intercept correction considered here do not bring substantial benefits

over DMS.

5 Empirical Illustration

We assess the previous analysis by revisiting the forecasting exercise in PT. These authors

evaluate the forecasting properties of various estimation schemes using the Stock and

Watson (2004) dataset, which is quarterly and covers the period 1959-99.4 This consists

in forecasting growth in industrial production and real GDP, the inflation rate and the

short interest rates for six of the seven G7 economies (Canada, France, Germany, Japan,

the UK and the US). The dataset we use is relatively old and does not include the recent

crisis. Our choice is deliberate as it allows for comparability of our results with earlier

work.

To see the impact of a break on forecasting, we use short and long rolling windows

of 25 and 40 observations, as well as an expanding window (starting with 40 observation)

and carry estimation for AR(p) models for p = 1, 2, 4 as well as being selected by the

Akaike Information Criterion (up to 4 lags as in Stock and Watson, 2004). We also esti-

mate the date of a unique break using the method and code proposed by Bai and Perron

(1998, 2003). The test is that of a break in the conditional expectation, modeled as a

shift in the intercept under the maintained assumption that the model is an AR(1);5 a

trimming parameter of 15% excludes break dates at the beginning and end of the samples.

Break detection is done in pseudo-real time (in either rolling or expanding windows) and

break significance is assessed at the 10% level. The parameter b denotes the percentage of

4For comparability, we did not extend the sample to include more recent data.
5Breaks were only tested in the AR(1) since they refer to a change in the unconditional mean.
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significant breaks over the subsamples considered.6 The resulting post-break window size

averaged over the subsamples with significant breaks is denoted by k. In line with sugges-

tions by inter alia Pesaran and Timmermann (2005) and Clark and McCracken (2009),

we compute forecasts using the whole set of observations (in the subsample considered)

or only those before (denoted with suffix pre) and after (post) the significant break date

(i.e. using a two-step procedure). All methods are also assessed with multistep intercept

correction (suffix IC). Since our interest lies in forecasting in the presence of breaks, and

for comparability across the various methods, we only use subsamples where a significant

break is detected. Overall, we find that a substantial proportion of rolling windows exhibit

a significant break; a lower proportion of expanding windows do.7 In all situations, we re-

port8 both the ratios of out-of-sample (ex ante) empirical root MSFE (RMSFE), evaluated

ex-post, as well as the median ratios of absolute forecast errors (mRAFE). Tables 1 to 3

present results ordered according either to the variable to forecast, the forecast horizon or

per post-break sample size.

First, Table 1 records a summary of the performance comparisons. The table records,

for the variables and horizons considered, the proportion of cases where IMS is the most

accurate and the proportion of cases where alternatives perform at least as well as IMS.

The latter enable to see directly whether there is a point in considering the techniques.

The table does not report results for the estimated AR(2) forecasting model as these were

comparable to the AR(1) . The table can be summarized as follows.

Regarding the horizon: the relative performance of IMS decreases with the forecast

horizon for all models. It is at least as accurate as any other for more than 40% of the

cases of rolling window of fixed size. It also very accurate when the model is an AR(p)

whose order is chosen by the Akaike information criterion. Yet, overall (and also for fixed-

6A large b should advocate for a model with several in-sample breaks. We decide to leave this for future

research and focus here on the timing of the most significant shift.
7A possible explanation lies in that we test the null of a unique break. Additional in-sample breaks

(which are more likely in larger samples) may generate serial correlation of the residuals, and this is known

to affect the properties of the test.
8We do not perform tests for equal or superior forecast accuracy as the properties of such tests are

unknown when the forecasts are selected using in-sample pre-testing for breaks.

Extensive results are recorded in a supplement available from the author’s website.
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order AR models) its performance is low at longer horizons. IMS performs very poorly

when expanding windows of observations are used (Recursive Least Square, RLS); this

corresponds to a proportion b of significant breaks that is low.9 Now comparing other

techniques, we see that DMS can perform at least as well as IMS at short horizons in over

50% of the cases considered. Its performance is especially strong in expanding windows

— and also but to a lower extent when the model is an AR(p) with endogenously chosen

order — and this carries to the overall proportion for all models considered. The other

techniques do not perform as well (except for RLS). Yet, the variants of DMS (excluding

itself) are on average better for fixed order AR and fixed window estimation.

Comparing the models across variables yields essentially similar analyses. A noticeable

feature lies in the very different performances of IMS and DMS for industrial production

and real GDP growth versus inflation and the interest rate. In Table 2, we see that the

former two variables experience much fewer significant breaks than the latter two. This

corroborates the analytical results derived in the previous sections.

5.1 Ordering per variable

Table 2 reports the outcome of the empirical analysis under the assumption of an AR(1)

estimated over rolling windows of 25 observations. The results are contrasted: IMS fares

relatively well as most ratios are below unity. Notable exceptions comprise DMS at short

horizon which is more accurate 13 times out of 22 for h = 2, and 10 out of 22 for h = 4.

Interest rates are interesting as they constitute the only type of data for which the IMS

RMSFE is clearly increasing in the horizon. This is to the exception of Germany and the

UK, for which the table shows that DMS retains an advantage at longer horizons. The

German interest rate is especially worth looking at, for it exhibits much earlier breaks on

average: unsurprisingly IMSpost is then most accurate overall. Using pre-break subsamples

may also improve accuracy at intermediate horizons in the case of industrial production

growth. Overall, intercept correction brings no benefit here. When mRAFE is used as

a metric for accuracy comparisons, unreported tables also find DMS to be more accurate

at h = 2, but less so at longer horizons. The main difference with the RMSFE is that

9We refer the reader to the unreported supplementary web appendices for details.
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according to the mRAFE, IMSIC proves better at forecasting inflation at horizons h > 1.

The benefit of intercept correction is mainly in terms of absolute forecast error. This

is exactly the purpose of intercept correction to reduce bias, at the cost of an increased

variance. For intercept correction to achieve significant results on the RMSFE, the series

must be experiencing frequent breaks.

Unreported tables show that when estimating AR(2) models, the mentioned results

are still valid. Key differences include the lower accuracy of DMSpostIC at forecasting

inflation and the interest rates (also DMSpreIC but to a lesser extent). These series differ

from industrial production and real GDP growth which, when using expanding windows

of observations, yield hardly any significant break; inflation and the interest rates exhibit

by contrast a high occurrence of breaks. Increasing the autoregressive lag order, and

hence reducing the autocorrelation of the residuals also has an impact on the relative

performances of IMS and DMS, the former dominates as expected.

At long horizons, estimation uncertainty becomes a significant issue for DMS in small

samples. As a consequence, IMS tends to present the lowest RMSFE when an AR(1) or

an AR(p) , with p chosen by the AIC, are used.

Estimation over expanding windows enhances the benefits of DMS over IMS. As before,

IMS performs best when the estimated model is an AR(4) . In particular, out of the 12

series that experience significant breaks, DMS forecasts better than IMS 5 times at h = 2,

11 times at h = 5, 7 times at h = 10 and 4 times at h = 20. The corresponding numbers of

times DMS forecasts better using an AR(1) are 7, 10, 9 and 6 as the horizon grows from

2 to 20.

5.2 Ordering per post-break window

To view these results differently, we report the RMSFE for all series at once, but where

the forecasts are categorized according the size of the post-break window of observations.

This allows to examine the relationship between k and h. For conciseness, we only report

one table: AR(1) and AR(4) models estimated over long windows (Table 3).

This table confirms the previous observations. In the AR(1) estimated over short

windows DMS performs well for h ≤ 6. This is also the case for IMSpost and DMSpost.
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Intercept correction only proves beneficial when estimation is carried over the pre-break

subsample with k low and the horizon h ≤ k. This remark also applies to other sample

sizes and autoregressive lag orders to the exception of the AR(4) for k ≤ 7 in which case

IMS is outperformed when h ≥ k. In this situation intercept correction also proves useful.

When the model is an AR(4) , although the relative performance of IMS is decreasing in k

(as long as k ≥ h), this technique still dominates the others when the estimation window

is long (for 25 observations, it can be dominated by, inter alia, DMS and DMSpostIC).

Unreported tables exhibit similar results when considering expanding windows. The only

difference lies in that intercept correction improves the forecasts when h ≥ k, in particular

for IMSpreIC and DMSpostIC.

5.3 Comparison with previous literature

The empirical analysis above confirms our theoretical results that long horizons, moder-

ately recent breaks and small samples benefit DMS (and variations thereof) over IMS. As

in Tiao and Xu (1993) and Chevillon and Hendry (2005), residual autocorrelation also

favors DMS, although this technique can perform well at long horizons in the absence of

residual autocorrelation: this could explain why Pesaran et al. (2011) recommend the use

of the AIC over the BIC for selecting the lag order when forecasting at long horizons (since

BIC selects fewer lags in general). Yet, the choice of lag order is not so important as the

choice of forecasting technique and estimation window; this is in line with PT.

As analytically shown, whether h < k also affects relative forecasting accuracy. When

h ≥ k, it appears that DMS should be preferred in a moderate order autoregressive model

(AR(4) here). At shorter horizons, multistep intercept correction can reduce the forecast

bias. That this improvement should come at the cost of an increase in the variance (indeed

IMS performs better in terms of RMSFE than in mRAFE) does not necessarily imply that

the overall MSFE is larger. Hence the role of the forecast bias must not be overlooked

in the assessment of the forecast accuracy, this has been stressed by, inter alia, Hendry

(2000), Clements and Hendry (2006), Pesaran and Timmermann (2004, 2005, 2009), and

Giacomini and Rossi (2009).

We also show that the two-step procedures that rely solely on post-break data only
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perform well when breaks are very frequent (here for inflation and interest rates) and often

in conjunction with intercept correction (in particular if k is low). Using only pre-breaks

subsamples does not provide systematic benefits (except in IMSIC when k is very low). As

noticed by PT, the benefits of increasing the number of observations are not strong in the

presence of location shifts. Overall the results are hence in line with PT but extend them

in the direction of multistep forecasting and with respect to the timing of the break. That

pre-testing for breaks may not improve the accuracy of the forecasts has been discussed

by many authors, see Elliott and Timmermann (2008).

The results also confirm and shed light on the empirical analysis of Marcellino et al.

(2006), Proietti (2011) and Pesaran et al. (2011). The conclusions of these authors are

that IMS is preferable when the horizon is long, the autoregressive order is large or when

forecasting measures of real activity (this is also one of the conclusions of Clark and

McCracken, 2008). This also arises here but we are able to qualify it further since we

show that money and interest rates experience more frequent breaks. It could be argued

that in fact these variables exhibit large moving average roots (see Schwert, 1987 and Stock

and Watson, 2007) and that these yield spuriously significant breaks. Yet, the empirical

relationship we observe between the horizon and the post-break sample size is in line with

our theoretical predictions and so confirms that breaks indeed are at play. So the relative

values of h and k are an important part of the forecasting performances and should not

be neglected.

6 Conclusions

This paper shows that, when economic series undergo location shifts, there exists a ra-

tionale in using direct multistep estimation for forecasting. We have demonstrated that

breaks matter to the relative performances of multistep forecasting techniques and not

only if they occur towards the forecast origin. Indeed, as the post-shift sample size vary,

so do the forecasting properties of DMS and IMS. We analyzed two techniques of intercept

correction. We showed that direct multistep performs relatively better (i) at longer hori-

zons, (ii) under recent breaks and (iii) when using an autoregressive model of moderate
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lag order. By contrast, intercept correction does not seem to provide systematic benefits

in this context as it relies on correctly specifying the underlying dynamics.

The analysis that we have performed here mostly focused on autoregressive forecasting

in the presence of a unique break. We could also compare our results with multivariate

models where DMS has been shown by Chevillon (2009), Pesaran et al. (2011) and McElroy

and McCracken (2012) to improve accuracy over IMS. Also, evaluating the performance

using the forecast error first two moments may not be enough and it would be of interest to

consider directional and asymmetric assessment of forecasting performances as in Patton

and Timmermann (2007).
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7 Appendix

Throughout the appendix, we denote references to corollary 5(·) of Georgiev (2002) as

G-5(·).

7.1 Proof of Proposition 1

7.1.1 IMS

The OLS estimator of (τ, ρ) in the constant intercept model defined as τ̂

ρ̂
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


=

 1 T−1
∑T

t=1 yt−1

T−1
∑T

t=1 yt−1 T−1
∑T

t=1 y
2
t−1

−1  T−1/2
∑T

t=1 εt

T−1/2
∑T

t=1 yt−1εt


to obtain the result.
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7.1.2 DMS

Denoting Th = T − h+ 1 the effective sample, the DMS estimators are defined as τ̃h

ρ̃h

 =

 Th
∑T

t=h yt−h∑T
t=h yt−h

∑T
t=h y

2
t−h

−1  ∑T
t=h yt∑T

t=h yt−hyt

 ,
where yt = ρhyt−h +

∑h−1
i=0 ρ

i (εt−i + τt−i) , so τ̃h

ρ̃h − ρh

 =

 Th
∑T

t=h yt−h∑T
t=h yt−h

∑T
t=h y

2
t−h

−1  ∑T
t=h

∑h−1
i=0 ρ

i (εt−i + τt−i)∑T
t=h yt−h

(∑h−1
i=0 ρ

i (εt−i + τt−i)
)
 .

Assuming h = bchT c implies, under the same conditions as in the one-step OLS estimators: T−1
∑T

t=h yt−h

T−1
∑T

t=h y
2
t−h

⇒
 1

1−ρ
∫ 1−ch
0 J (r) dr

σ2
ε (1−ch)
1−ρ2 + 1

(1−ρ)2
∫ 1−ch
0 J2 (r) dr

 .
We also need the limit of T−1

∑T
t=h yt−hyt. We express the sum as

T−1
T∑
t=h

yt−hyt = ρhT−1
T−h∑
t=0

y2t + T−1
T∑
t=h

yt−h

h−1∑
i=0

ρi (εt−i + τt−i)

= ρhT−1
T−h∑
t=0

y2t + T−1
T∑
t=h

yt−h

h−1∑
i=0

ρiεt−i + T−1
T−h∑
t=0

yt

h−1∑
i=0

ρiτt+h−i,

where we notice that h = bchT c → ∞ implies that the term multiplied by ρh is asymptot-

ically negligible. G-5(g) shows that

T−1
T∑
t=h

yt−h

h−1∑
i=0

ρiεt−i = Op

(
T−1/2

)
,

so we restrict our attention to

T−1
T−h∑
t=0

yt

h−1∑
i=0

ρiτt+h−i =
1− ρh

1− ρ
T−1

T−h∑
t=0

ytτt + T−1
T−h∑
t=0

yt

h∑
j=1

1− ρh−j

1− ρ
qt+jvt+j .

Now G-5(b) implies that
∑T−h

t=0 yt
∑h−1

j=0 ρ
jqt+h−jvt+h−j = Op (1). The previous expression

rewrites hence as

T−1
T−h∑
t=0

yt

h−1∑
i=0

ρiτt+h−i =
1

1− ρ
T−1

T−h∑
t=0

ytτt + T−1
T−h∑
t=0

yt

h∑
j=1

1

1− ρ
qt+jvt+j +Op

(
T−1

)
=

1

1− ρ
T−1

T−h∑
t=0

ytτt +
1

1− ρ
T−1

T−h∑
t=0

yt (τt+h − τt) +Op
(
T−1

)
,
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i.e.

T−1
T−h∑
t=0

yt

h−1∑
i=0

ρiτt+h−i =
1

1− ρ
T−1

T−h∑
t=0

ytτt+h +Op
(
T−1

)
,

where T−1
∑T−h

t=0 ytτt+h ⇒ 1
1−ρ

∫ 1−c
0 J (r) J (r + c) dr. The result follows:

T−1
T∑
t=h

yt−hyt ⇒
1

(1− ρ)2

∫ 1−c

0
J (r) J (r + c) dr.

G-5 similarly implies that T−1
∑T

t=h

∑h−1
i=0 ρ

i (εt−i + τt−i)

T−1
∑T

t=h yt−h

(∑h−1
i=0 ρ

i (εt−i + τt−i)
)
⇒

 1
1−ρ

∫ 1−c
0 J (r + c) dr

1
(1−ρ)2

∫ 1−c
0 J (r) J (r + c) dr

 .
We turn in the next subsection to the distributions conditional on event Eck .

7.2 Conditional distributions in Corollaries 2 and 3

We assume a single break of magnitude γ occurs at time bT (1− ck)c. This implies that

J+ (r) = γ × 1{r<1−ck}. We consider the corollaries together.

7.2.1 One-step estimators

The following holds under the stated assumptions:∫ 1

0
J+ (r) dr = ckγ, and

∫ 1

0
J2
+ (r) dr = ckγ

2,

so  τ̂∞

ρ̂∞

 =

 1 ckγ
1−ρ

ckγ
1−ρ

σ2
ε

1−ρ2 + ckγ
2

(1−ρ)2

−1  ckγ
1−ρ

ρσ2
ε

1−ρ2 + ckγ
2

(1−ρ)2

 ,
which also rewrites as τ̂∞

ρ̂∞

 =


(

1−
1+ρ
1−ρ ck(1−ck)γ

2

σ2
ε+

1+ρ
1−ρ ck(1−ck)γ2

)
γck

1− σ2
ε

σ2
ε+

1+ρ
1−ρ ck(1−ck)γ2

(1− ρ)

 .
This shows that as ck → 0, the asymptotic distributions satisfy: τ̂∞

ρ̂∞

 ∼
ck→0

 γck

ρ

 .
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7.2.2 Multistep estimators

We first compute the integrals, denoting a ∨ b = max (a, b) and a ∧ b = min (a, b) . First if

1− ch ≤ 1− ck (i.e. ck ≤ ch)∫ 1−ch

0
J+ (r) dr =

∫ 1−ch

0
J2
+ (r) dr = 0;

∫ 1−ch

0
J (r) J (r + ch) dr = 0;∫ 1

ch

J+ (r) dr =

∫ 1

ch∨(1−ck)
J+ (r) dr = ((1− ch) ∧ ck) γ;

then if ck ≥ ch∫ 1−ch

0
J+ (r) dr = (ck − ch) γ;

∫ 1−ch

0
J2
+ (r) dr = (ck − ch) γ2;∫ 1−ch

0
J (r) J (r + ch) dr = ((1− 2ch) ∧ (ck − ch)) γ2;∫ 1

ch

J+ (r) dr = ((1− ch) ∧ ck) γ.

Hence ∫ 1−ch

0
J+ (r) dr = [(ck − ch) ∨ 0] γ;

∫ 1−ch

0
J2
+ (r) dr = [(ck − ch) ∨ 0] γ2;∫ 1−ch

0
J (r) J (r + ch) dr = [((1− 2ch) ∧ (ck − ch)) ∨ 0] γ2;∫ 1

ch

J+ (r) dr = ((1− ch) ∧ ck) γ.

The previous expressions imply that the estimators hence, satisfy the following expressions.

First, if ck ≤ ch τ̃∞,ch

ρ̃∞,ch

 =

 (1− ch)−1 0

0
(
σ2
ε (1−ch)
1−ρ2

)−1
 =

 (1 ∧ ck
1−ch

)
γ

1−ρ

0


∼

ck→0

 γ
1−ρ

ck
1−ch

0

 .
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Now if ck > ch, τ̃∞,ch

ρ̃∞,ch

 =

 1− ch (ck − ch) γ
1−ρ

(ck − ch) γ
1−ρ

σ2
ε (1−ch)
1−ρ2 + (ck − ch) γ2

(1−ρ)2

−1

×

 ((1− ch) ∧ ck) γ
1−ρ

((1− 2ch) ∧ (ck − ch))
(

γ
1−ρ

)2


=
1

(1− ch) (1− ch) σ2
ε

1−ρ2 + (1− ck) (ck − ch)
(

γ
1−ρ

)2
×

 (1− ch) ((1− ch) ∧ ck) γ
1−ρ

σ2
ε

1−ρ2 + ch (ck − ch)
(

γ
1−ρ

)3
((1− ck) [(1− ch) ∧ ck]− ch (1− ch))

(
γ

1−ρ

)2
 ,

so as ch → 0 τ̃∞,c
h

ρ̃∞,ch

 →
ch→0

1

σ2
ε

1−ρ2 + (1− ck) ck
(

γ
1−ρ

)2
 σ2

ε
1−ρ2

(1− ck) γ
1−ρ

 γ

1− ρ
ck.

Also, as γ →∞, τ̃∞,c
h

ρ̃∞,ch

 ∼
γ→∞

 ch
1−ck

(
γ

1−ρ

)
[(

1−2ch
ck−ch

)
∧ 1
]
− ch

1−ck

 ,
so if ck − ch ≤ 1− 2ch τ̃∞,c

h

ρ̃∞,ch

 ∼
γ→∞

 ch
1−ck

(
γ

1−ρ

)
1− ch

1−ck

 .
7.3 Proof of Proposition 4

We start with IMS:

E
(
êT+h|T |Eck

)
= E

(
ρ{h}τT + ρhyT −

(
ρ̂{h}τ̂ + ρ̂hyT

)
|Eck

)
→ γ

1− ρ
− τ̂∞

1− ρ̂∞
,

using Slutsky’s formula since, conditional on Eck , the estimators converge towards a non-

stochastic limit. The variance is

Var
(
êT+h|T |Eck

)
= Var

[(
ρh − ρ̂h

)
(yT − E (yT |Eck)) |Eck

]
+ Var

(
h−1∑
i=0

ρiεT+h−i|Eck

)

→ σ2y , as T →∞.
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Similarly, the DMS forecast error admits the conditional expectation

E
(
ẽT+h|T |Eck

)
= ρ{h}τT + ρhE (yT |Eck)− (E (τ̃h + ρ̃hyT |Eck))

→ γ

1− ρ
(1− ρ̃∞,ch)− τ̃∞,ch ,

and conditional variance

Var
(
ẽT+h|T |Eck

)
= Var

[(
ρh − ρ̃h

)
(yT − E (yT |Eck)) |Eck

]
+ Var

(
h−1∑
i=0

ρiεT+h−i|Eck

)

→
(
1 + ρ̃2∞,ch

)
σ2y .

7.4 Proof of Proposition 5

We now derive the distribution of intercept corrected forecasts. First

δIC = yT − ŷT |T−1 = τT − τ̂ + (ρ− ρ̂) yT−1 + εT ,

and so the IMSIC forecast error is

êIMSIC
T+h|T = ρ{h−1}τT − ρ̂{h−1}τ̂ + ρhτT − ρ̂hτ̂ +

(
ρh−1 − ρ̂h−1

)
τT

+
(
ρh+1 − ρ̂h+1

)
yT−1 − ρ̂h−1 (ρ− ρ̂) yT−1

+
h∑
j=1

ρh−iεT+i +
(
ρh − ρ̂h

)
εT − ρ̂h−1εT ,

whose asymptotic conditional moments coincide with those of IMS:

E
(
êIMSIC
T+h|T |Eck

)
→ γ

1− ρ
− 1

1− ρ̂∞
τ̂∞;

V
(
êIMSIC
T+h|T |Eck

)
→ σ2y .

Now, for DMS, the correction is δDMSIC = yT − ŷT |T−h which is equal to

δDMSIC =

h−1∑
j=0

ρjτT−j − τ̃h +
(
ρh − ρ̃h

)
yT−h +

h−1∑
j=0

ρjεT−j .

The corresponding forecast error admits the following moments: first, the expectation

E
(
ẽDMSIC
T+h|T |Eck

)
can be shown to converge to zero both is ck ≤ ch and if ch ≤ ck. As for
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the second moments, we use

Cov

yT , h−1∑
j=0

ρjεT−j |Eck

→ σ2y ;

Cov ((yT − E (yT |Eck)) , δDMSIC)→ σ2y ;

Var [δDMSIC |Eck ]→
(
1 + ρ̃2∞,ch

)
σ2y ;

which imply that the variance satisfies

Var
(
ẽDMSIC
T+h|T |Eck

)
= Var

[(
ρh − ρ̃h

)
(yT − E (yT |Eck))− δDMSIC |Eck

]
+ Var

(
h−1∑
i=0

ρiεT+h−i|Eck

)

→
(
1 + 2ρ̃2∞,ch

)
σ2y .

7.5 Proof of Corollary 6

We now compute the asymptotic conditional MSFEs:

E
(
êT+h|T |Eck

)2
+ Var

(
êT+h|T |Eck

)
→ MSFEIMS

∞ =

[
γ

1− ρ
− τ̂∞

1− ρ̂∞

]2
+ σ2y ;

E
(
ẽT+h|T |Eck

)2
+ Var

(
ẽT+h|T |Eck

)
→ MSFEDMS

∞

=

[
γ

1− ρ
(1− ρ̃∞,ch)− τ̃∞,ch

]2
+
(
1 + ρ̃2∞,ch

)
σ2y ;

E
(
êIMSIC
T+h|T |Eck

)2
+ Var

(
êIMSIC
T+h|T |Eck

)
→ MSFEIMSIC

∞ = MSFEIMS
∞ ;

E
(
ẽDMSIC
T+h|T |Eck

)2
+ Var

(
ẽDMSIC
T+h|T |Eck

)
→ MSFEDMS

∞ =
(
1 + 2ρ̃2∞,ch

)
σ2y .

Hence the multistep MSFEs:

MSFEIMS
∞ =

(
γ

1− ρ

)2

(1− ck)2 + σ2y ,
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and

MSFEDMS
∞ ∼

ck→0

(
γ

1− ρ

)2(
1− ck

1− ch

)2

+ σ2y ;

MSFEDMS
∞ ∼

ch→0

(
γ

1− ρ

)2

1− (1− ck) ck
σ2
ε

1−ρ2 + (1− ck) ck
(

γ
1−ρ

)2 ( γ

1− ρ

)2


2

(1− ck)2

+

1 +

1−
σ2
ε

1−ρ2

σ2
ε

1−ρ2 + (1− ck) ck
(

γ
1−ρ

)2


2σ2y .

Finally, for MSFEDMSIC
∞ =

(
1 + 2ρ̃2∞,ch

)
σ2y ,

MSFEDMSIC
∞ ∼

ck→0
σ2y ;

MSFEDMSIC
∞ ∼

ch→0

1 + 2

(
γ

1− ρ

)4 c2k[
σ2
ε

1−ρ2 + (1− ck) ck
(

γ
1−ρ

)2]2
σ2y .

Also if ck ≤ 1 − ch, as γ → ∞, MSFEDMSIC
∞ ∼

γ→∞

(
1 + 2

(
1− ch

1−ck

)2)
σ2y remains finite

contrary to the others.
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Variables Horizons Variables Horizons
Infl. IP GDP IR 1 2 4 8 12 Infl. IP GDP IR 1 2 4 8 12

AR(1) T = 25
IMS (∗) .29 .28 .32 .33 .44 .33 .22 .28 .17 .38 .39 .73 .31 .68 .64 .45 .42 .43
DMS .56 .59 .59 .63 1.0 .59 .55 .41 .39 .37 .43 .36 .51 .99 .43 .35 .18 .11
IMSIC .28 .23 .37 .29 .23 .30 .32 .29 .32 .14 .00 .00 .22 .05 .06 .11 .09 .14
DMSIC .30 .24 .36 .28 .23 .27 .30 .33 .33 .28 .03 .00 .25 .05 .07 .18 .24 .18
all IMS .24 .31 .39 .37 .33 .32 .33 .32 .31 .06 .07 .03 .17 .08 .07 .09 .08 .09
all DMS .31 .39 .42 .40 .44 .37 .38 .35 .36 .23 .20 .10 .32 .23 .16 .22 .22 .23
all PRE .17 .37 .37 .30 .24 .27 .34 .32 .32 .07 .16 .02 .19 .05 .07 .14 .14 .16
all POST .31 .34 .42 .47 .47 .38 .36 .35 .35 .15 .11 .08 .26 .13 .13 .14 .17 .18
all IC .28 .24 .37 .32 .28 .30 .31 .30 .31 .18 .03 .01 .23 .08 .07 .12 .13 .16

AR(4) T = 40
IMS (∗) .27 .28 .32 .29 .56 .28 .11 .17 .22 .39 .43 .49 .31 .55 .49 .48 .50 .45
DMS .52 .50 .59 .59 1.0 .44 .55 .38 .36 .58 .38 .39 .58 1.0 .49 .41 .23 .30
IMSIC .26 .23 .35 .23 .21 .26 .29 .26 .30 .18 .03 .08 .40 .15 .18 .14 .16 .20
DMSIC .33 .26 .35 .29 .21 .30 .35 .33 .33 .18 .04 .06 .31 .15 .14 .11 .16 .16
all IMS .20 .30 .37 .26 .26 .27 .30 .29 .28 .11 .08 .08 .23 .15 .12 .12 .12 .12
all DMS .35 .38 .42 .43 .38 .33 .44 .41 .41 .26 .15 .14 .29 .29 .20 .20 .17 .19
all PRE .23 .37 .37 .32 .23 .28 .38 .36 .35 .11 .13 .08 .11 .06 .11 .14 .11 .12
all POST .28 .33 .39 .37 .30 .29 .37 .37 .36 .19 .09 .09 .29 .23 .14 .14 .15 .16
all IC .34 .24 .34 .32 .26 .29 .33 .33 .34 .17 .04 .05 .28 .13 .14 .11 .13 .15

AR(p) RLS
IMS (∗) .50 .49 .53 .51 .72 .61 .39 .39 .39 .10 .04 NA .07 .16 .07 .01 .01 .06
DMS .56 .61 .60 .65 1.0 .61 .62 .44 .35 .67 .93 NA .75 1.0 .73 .93 .83 .67
IMSIC .29 .23 .36 .49 .30 .35 .35 .35 .33 .49 .67 NA .32 .55 .64 .67 .64 .59
DMSIC .31 .24 .35 .35 .30 .29 .32 .35 .29 .48 .68 NA .34 .55 .64 .68 .63 .60
all IMS .18 .24 .34 .21 .22 .23 .25 .25 .24 .47 .73 NA .42 .60 .63 .68 .69 .64
all DMS .22 .30 .38 .25 .35 .28 .31 .27 .23 .43 .77 NA .50 .67 .65 .74 .67 .61
all PRE .10 .24 .33 .12 .17 .18 .21 .21 .20 .35 .75 NA .45 .55 .62 .68 .68 .63
all POST .17 .25 .33 .15 .23 .22 .23 .22 .20 .48 .75 NA .46 .68 .65 .71 .67 .62
all IC .21 .23 .34 .21 .24 .24 .26 .26 .23 .53 .67 NA .36 .59 .63 .68 .66 .61

ALL MODELS
IMS (∗) .34 .38 .47 .25 .60 .39 .24 .25 .24
DMS .54 .58 .58 .61 1.0 .55 .56 .41 .36
IMSIC .27 .23 .36 .31 .25 .29 .31 .30 .31
DMSIC .31 .25 .35 .30 .25 .28 .33 .34 .31
all IMS .22 .29 .37 .28 .28 .28 .29 .30 .29
all DMS .31 .37 .41 .37 .40 .34 .39 .35 .34
all PRE .18 .35 .37 .25 .22 .26 .32 .31 .30
all POST .27 .32 .39 .34 .35 .31 .33 .33 .32
all IC .30 .25 .35 .29 .27 .28 .30 .31 .31

(∗): the lines denoted by IMS report the proportion of cases where IMS is at least as accurate

as any other technique. All other entries report the proportion of cases where the corresponding

forecasting technique is at least as accurate as IMS. The variables are abbreviated as follows: infl.

is inflation, IP is Industrial Production Growth, GDP is real GDP growth and IR is the interest

rate. The entries whose line is referred to starting with “all” denote the proportion over all the

variants of the quoted technique, excluding the two standard IMS and DMS.

Table 1: Comparison of empirical out-of-sample relative forecasting performances across

techniques, models, variables and horizons.
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h = 1 2 5 10 20 1 2 5 10 20 1 2 5 10 20 1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

Without Intercept Correction

k b RMSFE IMS / σ RMSFE IMS/DMS RMSFE IMS/IMSpre RMSFE IMS/DMSpre RMSFE IMS/IMSpost RMSFE IMS/DMSpost

Inflation

Canada 19.4 0.87 0.54 0.69 0.90 1.02 1.17 1.00 1.03 0.96 0.93 0.79 0.52 0.57 0.59 0.60 0.63 0.52 0.52 0.48 0.55 0.56 1.16 1.20 1.20 1.18 1.18 1.16 1.04 0.76 0.75 0.61
France 20.3 0.73 0.47 0.64 0.88 1.04 1.10 1.00 1.03 1.05 1.01 0.85 0.47 0.48 0.55 0.60 0.63 0.47 0.39 0.48 0.49 0.49 1.03 1.02 1.03 1.06 0.93 1.03 0.79 0.85 0.67 0.52
Germany 22.3 0.57 0.97 1.06 1.04 1.14 1.04 1.00 1.00 1.03 0.87 0.82 0.74 0.77 0.79 0.90 0.86 0.74 0.70 0.68 0.68 0.58 1.14 1.14 1.06 0.97 0.86 1.14 1.02 0.70 0.62 0.56
Japan 19.0 0.32 0.84 1.29 0.79 0.71 0.88 1.00 0.97 1.00 0.61 0.77 0.48 0.69 0.55 0.51 0.59 0.48 0.69 0.69 0.76 1.06 0.60 0.64 0.22 0.08 0.04 0.60 0.63 0.54 0.61 1.03
UK 20.1 0.50 0.54 0.81 1.05 1.29 1.50 1.00 1.01 0.98 1.05 1.00 0.55 0.61 0.68 0.77 0.80 0.55 0.64 0.61 0.71 0.81 1.12 1.15 1.13 1.10 1.21 1.12 0.82 0.67 0.70 0.70
US 19.4 0.52 0.59 0.73 0.90 1.18 1.27 1.00 1.01 1.01 1.02 1.01 0.55 0.55 0.59 0.67 0.66 0.55 0.52 0.56 0.65 0.68 1.10 1.08 0.99 0.74 0.62 1.10 0.66 0.60 0.85 0.66

Industrial production growth

Canada 15.7 0.20 0.75 1.07 0.99 0.96 0.49 1.00 0.99 0.96 0.93 1.06 1.00 0.94 1.02 0.76 0.39 1.00 0.99 1.38 0.96 0.85 0.74 0.73 0.64 0.76 0.56 0.74 0.89 0.66 0.78 0.80
France 22.9 0.18 0.72 0.80 1.30 0.76 0.79 1.00 1.02 0.96 0.94 0.87 0.78 0.91 1.05 0.88 1.07 0.78 0.91 1.12 0.86 0.92 1.24 0.99 0.94 0.86 0.86 1.24 0.94 0.89 1.01 0.96
Germany 20.4 0.21 1.05 0.93 0.96 0.88 0.93 1.00 0.96 0.94 0.94 0.86 0.81 0.83 0.69 0.28 0.07 0.81 0.89 0.90 1.00 0.80 1.24 0.96 0.62 0.56 0.55 1.24 0.84 0.96 0.90 1.04
Japan 23.6 0.15 0.83 1.07 0.99 0.68 0.59 1.00 0.99 0.97 0.87 0.86 0.79 0.83 0.81 0.56 0.52 0.79 0.88 1.12 0.65 0.76 1.17 0.95 0.44 0.18 0.11 1.17 0.93 0.96 0.75 1.18
UK 18.9 0.09 0.66 0.47 0.50 0.67 0.44 1.00 1.04 1.30 0.91 0.88 0.68 1.15 0.74 1.29 1.18 0.68 0.97 1.22 1.12 1.09 1.24 0.56 0.58 0.65 0.47 1.24 0.44 0.89 0.84 0.85
US 17.4 0.15 0.88 0.74 0.44 0.56 0.40 1.00 1.01 0.96 0.75 1.13 1.09 1.09 0.65 1.01 0.66 1.09 1.14 0.73 0.79 0.76 1.00 0.78 0.50 0.50 0.48 1.00 0.91 0.83 0.62 0.91

Real GDP growth

Canada 21.5 0.16 0.81 0.93 0.65 0.93 0.76 1.00 1.03 0.93 0.87 0.89 0.78 0.83 0.82 0.77 0.60 0.78 0.96 0.97 0.91 0.74 0.96 0.65 0.41 0.58 0.51 0.96 0.68 0.50 0.77 0.61
Germany 20.3 0.44 0.83 0.78 0.80 0.91 0.72 1.00 0.97 0.90 0.98 1.01 0.81 0.86 0.84 0.88 0.82 0.81 0.81 0.83 0.98 0.93 1.30 0.97 0.87 0.87 0.77 1.30 0.94 0.94 0.96 0.89
Japan 20.7 0.60 0.63 0.78 0.54 0.68 0.75 1.00 1.08 1.12 0.94 0.99 0.54 0.81 0.65 0.71 0.75 0.54 0.84 0.64 0.73 0.75 1.33 1.20 1.17 1.09 1.01 1.33 1.11 0.83 1.02 0.91
UK 21.4 0.18 0.60 0.56 0.64 0.60 0.45 1.00 0.95 1.00 0.88 0.82 0.66 0.75 1.01 1.33 0.93 0.66 0.63 0.99 1.16 0.90 1.20 0.89 0.78 0.61 0.50 1.20 0.67 0.76 0.61 0.51
US 18.2 0.20 1.34 1.36 1.13 1.03 1.09 1.00 0.98 0.90 0.93 1.02 0.89 0.88 0.83 0.88 0.83 0.89 0.98 0.82 1.00 0.96 1.11 0.96 0.80 0.83 0.89 1.11 0.88 0.85 0.85 1.20

Interest rate

Canada 19.4 0.56 0.68 0.88 1.13 1.16 1.28 1.00 1.04 0.99 1.02 0.97 0.57 0.64 0.73 0.73 0.78 0.57 0.68 0.61 0.66 0.70 1.06 1.07 1.11 1.15 1.09 1.06 1.06 1.06 0.97 0.83
France 22.4 0.76 0.57 0.77 0.86 1.06 1.13 1.00 0.99 1.25 0.96 0.97 0.44 0.50 0.52 0.60 0.62 0.44 0.45 0.49 0.51 0.63 1.24 1.40 1.54 1.64 1.44 1.24 1.00 0.74 0.72 0.74
Germany 12.5 0.27 0.55 1.67 0.67 0.78 0.98 1.00 0.98 0.89 0.78 1.18 0.41 0.87 0.75 0.69 0.61 0.41 0.71 0.40 0.49 0.48 0.98 1.13 0.76 1.06 1.00 0.98 0.71 0.68 0.59 0.85
UK 19.8 0.56 0.62 0.89 1.23 1.04 1.11 1.00 1.14 1.06 1.34 1.27 0.45 0.59 0.67 0.62 0.63 0.45 0.62 0.58 0.76 0.75 1.02 1.19 1.22 1.52 1.52 1.02 1.34 1.17 1.43 1.07
US 19.8 0.74 0.91 1.13 1.14 1.40 1.45 1.00 1.01 1.08 0.91 0.94 0.61 0.67 0.67 0.80 0.85 0.61 0.53 0.71 0.75 0.90 1.09 1.13 1.13 1.07 1.03 1.09 1.06 1.00 0.92 1.01

With Intercept Correction

k b RMSFE IMS/IMSIC RMSFE IMS/DMSIC RMSFE IMS/IMSpreIC RMSFE IMS/DMSpreIC RMSFE IMS/IMSpostIC RMSFE IMS/DMSpostIC

Inflation

Canada 19.4 0.87 0.72 0.82 0.94 1.00 1.00 0.72 0.80 0.89 0.99 1.05 0.54 0.70 0.70 0.61 0.56 0.54 0.81 1.01 1.05 1.07 0.80 0.85 0.73 0.58 0.60 0.80 0.98 1.05 1.12 1.07
France 20.3 0.73 0.74 0.92 0.97 1.01 1.03 0.74 0.91 0.93 0.99 0.97 0.50 0.79 0.90 0.67 0.58 0.50 0.67 0.95 1.07 1.05 0.81 0.74 0.60 0.56 0.56 0.81 1.03 1.18 1.20 1.19
Germany 22.3 0.57 0.68 0.74 0.83 0.75 0.72 0.68 0.72 0.74 0.74 0.75 0.65 0.79 0.76 0.65 0.54 0.65 0.76 0.83 0.81 0.82 0.77 0.77 0.67 0.52 0.42 0.77 0.83 0.85 0.81 0.75
Japan 19.0 0.32 0.53 0.85 0.49 0.48 0.57 0.53 0.75 0.51 0.94 0.42 0.92 0.87 0.39 0.33 0.37 0.92 1.04 0.78 0.69 0.40 0.47 0.40 0.15 0.06 0.04 0.47 0.97 0.56 0.50 0.58
UK 20.1 0.50 0.85 1.00 1.38 1.04 1.13 0.85 0.98 1.33 1.10 1.02 0.75 0.91 0.90 0.76 0.74 0.75 1.05 1.32 1.04 1.15 0.88 1.03 0.82 0.76 0.95 0.88 1.06 1.28 1.13 1.17
US 19.4 0.52 0.66 0.69 0.77 0.69 0.76 0.66 0.69 0.77 0.89 0.98 0.42 0.56 0.52 0.52 0.50 0.42 0.61 0.67 0.92 1.02 0.74 0.59 0.41 0.38 0.38 0.74 0.89 0.93 0.98 0.96

Industrial production growth

Canada 15.7 0.20 0.86 0.71 0.66 0.63 0.39 0.86 0.67 0.72 0.65 0.44 0.66 0.63 0.53 0.49 0.26 0.66 0.69 0.67 0.63 0.40 0.89 0.58 0.56 0.60 0.32 0.89 0.70 0.67 0.55 0.36
France 22.9 0.18 0.93 0.91 0.95 0.64 0.88 0.93 0.85 0.91 0.60 0.97 0.95 0.85 0.90 0.63 0.83 0.95 0.93 0.98 0.62 0.97 1.00 0.88 0.92 0.56 0.72 1.00 0.86 0.91 0.66 0.88
Germany 20.4 0.21 1.16 0.90 0.62 0.62 0.69 1.16 0.88 0.58 0.70 0.79 1.25 0.73 0.51 0.26 0.07 1.25 0.92 0.58 0.71 0.79 1.16 0.74 0.43 0.39 0.40 1.16 0.85 0.63 0.62 0.72
Japan 23.6 0.15 0.78 0.95 0.56 0.38 0.45 0.78 0.95 0.71 0.58 0.35 0.66 0.80 0.55 0.36 0.39 0.66 0.74 0.67 0.63 0.50 0.79 0.74 0.33 0.15 0.10 0.79 1.05 0.70 0.43 0.47
UK 18.9 0.09 0.87 0.45 0.38 0.67 0.36 0.87 0.44 0.45 0.56 0.36 0.93 0.42 0.34 0.65 0.34 0.93 0.45 0.46 0.56 0.38 1.04 0.38 0.30 0.47 0.27 1.04 0.38 0.38 0.67 0.36
US 17.4 0.15 0.73 0.72 0.38 0.41 0.38 0.73 0.82 0.42 0.42 0.38 0.63 0.57 0.34 0.41 0.36 0.63 0.78 0.42 0.43 0.41 0.79 0.53 0.25 0.29 0.23 0.79 0.73 0.39 0.41 0.38

Real GDP growth

Canada 21.5 0.16 0.84 0.56 0.42 0.54 0.45 0.84 0.57 0.44 0.54 0.42 0.82 0.51 0.36 0.46 0.36 0.82 0.60 0.43 0.56 0.42 0.86 0.51 0.34 0.44 0.38 0.86 0.56 0.41 0.56 0.46
Germany 20.3 0.44 1.07 0.77 0.74 0.73 0.59 1.07 0.71 0.58 0.69 0.62 1.10 0.76 0.68 0.67 0.53 1.10 0.73 0.61 0.72 0.60 1.06 0.72 0.67 0.64 0.52 1.06 0.74 0.68 0.73 0.62
Japan 20.7 0.60 0.92 1.06 0.87 0.86 0.86 0.92 0.98 0.81 0.95 0.82 0.98 0.98 0.57 0.50 0.52 0.98 1.04 0.87 0.95 0.87 0.93 0.98 0.74 0.64 0.65 0.93 1.06 0.88 0.87 0.86
UK 21.4 0.18 1.33 0.86 0.85 0.58 0.42 1.33 0.83 0.82 0.62 0.45 1.23 0.81 0.87 0.60 0.39 1.23 0.95 0.88 0.65 0.40 1.39 0.88 0.79 0.55 0.40 1.39 0.67 0.79 0.58 0.42
US 18.2 0.20 0.71 0.80 0.64 0.61 0.69 0.71 0.72 0.56 0.57 0.66 0.82 0.68 0.55 0.48 0.50 0.82 0.73 0.54 0.57 0.62 0.72 0.69 0.53 0.51 0.49 0.72 0.74 0.61 0.57 0.68

Interest rate

Canada 19.4 0.56 0.73 0.88 0.88 0.97 1.01 0.73 0.86 0.85 0.87 0.94 0.65 0.92 0.96 0.99 1.03 0.65 0.89 1.06 0.98 1.03 0.85 0.94 0.74 0.68 0.66 0.85 1.01 0.98 1.00 1.02
France 22.4 0.76 0.92 1.02 1.06 1.41 1.30 0.92 1.02 0.95 1.18 1.19 0.86 1.16 1.17 1.36 0.89 0.86 1.10 1.32 1.14 1.28 1.07 1.04 0.81 0.60 0.54 1.07 1.35 1.22 1.44 1.33
Germany 12.5 0.27 0.78 1.12 0.55 0.67 0.68 0.78 1.08 0.52 0.61 0.73 0.76 1.12 0.53 0.57 0.68 0.76 1.15 0.72 0.69 0.69 0.84 1.21 0.33 0.46 0.44 0.84 1.11 0.58 0.76 0.67
UK 19.8 0.56 0.89 1.26 1.54 1.49 2.13 0.89 1.16 1.43 1.30 1.62 0.73 1.18 1.35 1.40 1.36 0.73 1.12 1.40 1.38 1.83 1.03 1.30 1.39 1.41 1.21 1.03 1.24 1.23 1.54 2.31
US 19.8 0.74 0.76 0.82 1.01 0.97 0.97 0.76 0.81 0.83 0.88 0.81 0.79 0.95 1.01 0.92 0.86 0.79 1.00 1.00 0.98 0.97 0.87 0.91 0.91 0.80 0.68 0.87 0.99 1.02 1.01 0.98

Table 2: Out-of-sample performance ordered by variable: the table reports the ratios of root-MSFE for AR(1) models estimated

over windows of 40 observations.
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AR(1) model

h ∈ {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12]

Without Intercept Correction

k ∈ k RMSFE IMS / σ RMSFE IMS/DMS RMSFE IMS/IMSpre RMSFE IMS/DMSpre RMSFE IMS/IMSpost RMSFE IMS/DMSpost

[4, 7] 6.4 1.03 1.39 1.07 1.07 1.00 1.00 0.92 0.88 0.79 0.89 0.92 0.95 0.79 0.88 0.90 0.86 1.10 0.93 0.43 0.14 1.10 0.74 0.64 0.71
[8, 11] 9.4 0.82 0.87 1.03 0.99 1.00 1.01 1.05 0.80 0.73 0.78 0.81 0.85 0.73 0.74 0.78 0.74 1.11 0.97 0.93 0.83 1.11 0.93 0.65 0.65
[12, 15] 13.5 0.59 0.79 0.87 1.14 1.00 1.05 1.09 0.93 0.62 0.67 0.68 0.79 0.62 0.63 0.64 0.69 1.07 1.10 1.08 0.99 1.07 1.04 0.85 0.69
[16, 19] 17.6 0.58 0.73 0.90 1.11 1.00 1.03 1.06 1.06 0.58 0.60 0.63 0.69 0.58 0.54 0.58 0.62 1.09 1.08 1.07 1.19 1.09 1.05 0.98 0.68
[20, 29] 24.6 0.65 0.78 0.96 1.17 1.00 1.02 1.05 1.06 0.53 0.57 0.61 0.69 0.53 0.50 0.56 0.65 1.02 1.04 1.05 1.04 1.02 1.02 1.04 0.87
[30, 39] 32.5 0.76 0.87 1.00 0.94 1.00 0.98 0.97 0.99 0.53 0.59 0.60 0.27 0.53 0.53 0.63 0.67 1.03 1.04 0.99 1.01 1.03 0.98 0.94 1.00

With Intercept Correction

RMSFE IMS/IMSIC RMSFE IMS/DMSIC RMSFE IMS/IMSpreIC RMSFE IMS/DMSpreIC RMSFE IMS/IMSpostIC RMSFE IMS/DMSpostIC

[4, 7] 6.4 0.97 1.00 0.67 0.68 0.97 0.97 0.66 0.69 1.01 1.03 0.73 0.75 1.01 1.06 0.70 0.74 0.91 0.59 0.28 0.13 0.91 1.04 0.75 0.75
[8, 11] 9.4 0.82 0.75 0.87 0.77 0.82 0.71 0.84 0.83 0.75 0.73 0.91 0.87 0.75 0.72 0.89 0.94 0.89 0.80 0.48 0.38 0.89 0.82 0.94 0.88
[12, 15] 13.5 0.80 0.92 0.98 0.98 0.80 0.89 0.82 0.90 0.61 0.89 0.98 0.94 0.61 0.90 0.95 0.99 0.90 1.01 0.72 0.57 0.90 0.98 0.96 1.00
[16, 19] 17.6 0.70 0.80 0.96 1.04 0.70 0.79 0.84 0.91 0.57 0.78 0.96 0.81 0.57 0.80 0.90 1.02 0.80 0.89 1.01 0.65 0.80 0.89 0.95 1.06
[20, 29] 24.6 0.67 0.78 0.91 0.93 0.67 0.75 0.85 0.88 0.63 0.84 0.79 0.64 0.63 0.79 0.89 0.94 0.74 0.85 0.95 0.83 0.74 0.88 0.96 0.95
[30, 39] 32.5 0.68 0.76 0.94 0.86 0.68 0.74 0.90 0.88 0.68 0.61 0.50 0.25 0.68 0.77 0.96 0.87 0.75 0.82 0.98 0.87 0.75 0.82 0.93 0.89

AR(4)

h ∈ {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12] {1} {2} [3, 6] [7, 12]

Without Intercept Correction

k ∈ k RMSFE IMS / σ RMSFE IMS/DMS RMSFE IMS/IMSpre RMSFE IMS/DMSpre RMSFE IMS/IMSpost RMSFE IMS/DMSpost

[4, 7] 6.4 1.03 1.43 1.89 5.35 1.00 0.99 1.33 3.21 0.81 0.94 1.59 4.71 0.81 0.92 1.47 3.73 0.56 0.66 1.12 3.56 0.56 0.66 1.12 3.56
[8, 11] 9.4 0.76 0.80 0.93 0.94 1.00 0.94 0.77 0.52 0.65 0.66 0.69 0.81 0.65 0.64 0.60 0.61 0.42 0.48 0.03 0.00 0.42 0.49 0.54 0.62
[12, 15] 13.5 0.58 0.76 0.81 1.13 1.00 0.98 0.93 0.71 0.55 0.59 0.58 0.78 0.55 0.57 0.50 0.61 0.80 0.87 0.65 0.19 0.80 0.74 0.58 0.69
[16, 19] 17.6 0.54 0.68 0.87 1.06 1.00 0.97 0.97 0.91 0.40 0.41 0.52 0.66 0.40 0.37 0.43 0.57 0.91 0.89 0.93 1.09 0.91 0.86 0.70 0.60
[20, 29] 24.6 0.66 0.76 0.95 1.15 1.00 1.01 1.01 1.00 0.32 0.38 0.43 0.11 0.32 0.32 0.48 0.63 0.90 0.93 0.99 1.01 0.90 0.93 0.91 0.72
[30, 39] 32.5 0.76 0.85 1.01 0.92 1.00 0.99 0.97 0.97 0.09 0.01 0.00 0.00 0.09 0.57 0.65 0.66 0.95 0.93 0.97 0.96 0.95 0.91 0.93 0.90

With Intercept Correction

RMSFE IMS/IMSIC RMSFE IMS/DMSIC RMSFE IMS/IMSpreIC RMSFE IMS/DMSpreIC RMSFE IMS/IMSpostIC RMSFE IMS/DMSpostIC

[4, 7] 6.4 1.06 1.01 0.77 0.94 1.06 1.06 1.21 2.89 1.00 1.08 1.24 3.64 1.00 1.11 1.30 3.66 1.24 1.09 1.32 3.74 1.24 1.09 1.32 3.74
[8, 11] 9.4 0.84 0.72 0.73 0.64 0.84 0.69 0.72 0.56 0.70 0.65 0.78 0.77 0.70 0.63 0.75 0.79 0.49 0.34 0.03 0.00 0.49 0.72 0.86 0.83
[12, 15] 13.5 0.82 0.87 0.83 0.85 0.82 0.85 0.78 0.78 0.57 0.78 0.81 0.79 0.57 0.73 0.69 0.83 0.79 0.87 0.40 0.18 0.79 0.76 0.85 1.00
[16, 19] 17.6 0.77 0.77 0.89 0.95 0.77 0.77 0.84 0.84 0.50 0.62 0.79 0.65 0.50 0.52 0.56 0.87 0.87 0.86 0.67 0.58 0.87 0.83 0.83 1.02
[20, 29] 24.6 0.72 0.75 0.84 0.89 0.72 0.77 0.84 0.86 0.44 0.52 0.44 0.11 0.44 0.40 0.71 0.93 0.76 0.83 0.91 0.72 0.76 0.84 0.86 0.92
[30, 39] 32.5 0.73 0.80 0.94 0.84 0.73 0.81 0.94 0.87 0.09 0.01 0.00 0.00 0.09 0.84 0.99 0.85 0.75 0.81 0.93 0.81 0.75 0.78 0.89 0.82

Table 3: Out-of-sample performance ordered by post-break window size k: the table reports the ratios of square-root Mean Square

Forecast Errors (the latter weighted by the variances of the variables) for AR(1) (above) and AR(4) (below) models estimated

over windows of 40 observations.
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