Short-Term Macroeconomic Forecasting and Turning-Point Detection after the Great Recession

Catherine DOZ, Laurent FERRARA & Pierre-Alain PIONNIER

10th French Econometrics Conference
November 29, 2018

Discussion by G. Chevillon
1. The model

Empirical macro model for real variables y_{it} that combines

- Common $I(1)$ latent factor c_t
 - with short-run dynamics, enters as distributed lag
 - innovations have 2 volatility regimes (high/low)
 - drift has 4 regimes: high/low in each for each volatility level
 - regimes are Markov-Switching

$$\phi_c(L) \Delta c_t = \mu_{S_t,V_t} + \sqrt{1 + hV_t} \sigma_c \eta^c_t$$

- smooth idiosyncratic $I(2)$ trend in GDP (slowly varying long term growth rate)

$$\Delta y_{it} = a_{it} + \gamma_i(L) \Delta c_t + u_{it}$$
$$\Delta a_{it} \sim iid, \quad u_{it} \sim AR$$

- Novelty is the regimes in μ, V
2. Application

- 5-variables, mixed frequency (4 monthly variables – GDP quarterly but disaggregated)
- Real-time vintages when available (post 1991 for GDP, post 1999 for monthly)
- Bayesian estimation
- Assumptions:
 - Identification: recession is more severe in high volatility regime (lower μ)
 - Innovations to $u_{it}, \Delta a_{it}, \Delta c_t$ orthogonal
- Assessment:
 - One Information Criterion
 - Forecasting Exercise post 2007
3. Remarks

- Mixed Frequency: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*

- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
3. Remarks

- **Mixed Frequency**: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*

- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved

- Why are recessions more severe under high volatility? how different from GARCH in mean?
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*
- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*

- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved

- Why are recessions more severe under high volatility? how different from GARCH in mean?

- **Model for real GDP**:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*

- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved

- Why are **recessions** more severe under high volatility? how different from GARCH in mean?

- **Model for real GDP**:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - maybe too much variation and long term growth could be constant + one shift
3. Remarks

- **Mixed Frequency:** could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*

- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved

- Why are **recessions** more severe under high volatility? how different from GARCH in mean?

- **Model for real GDP:**
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - * maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are **exogenous**, but productivity mostly procyclical
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*

- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved

- Why are **recessions** more severe under high volatility? how different from GARCH in mean?

- **Model for real GDP**:
 - $I(2)$ here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are exogenous, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*
- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- **Why are recessions** more severe under high volatility? how different from GARCH in mean?
- **Model for real GDP**:
 - $I(2)$ here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - * maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are **exogenous**, but productivity mostly procyclical
 - * introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
- **pseudo-forecasting exercise**
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), _Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data_
- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are **recessions** more severe under high volatility? how different from GARCH in mean?
- **Model for real GDP**:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are **exogenous**, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
- **pseudo-forecasting exercise**
 - evaluation sample is chosen **endogenously** (model suggested ex post)
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*

- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved

- **Why are recessions** more severe under high volatility? how different from GARCH in mean?

- **Model for real GDP**:
 - $I(2)$ here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are *exogenous*, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition

- **pseudo-forecasting exercise**
 - evaluation sample is chosen *endogenously* (model suggested ex post)
 - so extend the sample.
3. Remarks

- **Mixed Frequency**: could improve the treatment
e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), *Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data*
- **Real time** data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- **Why are recessions** more severe under high volatility? how different from GARCH in mean?
- **Model for real GDP**:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 * maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are *exogenous*, but productivity mostly procyclical
 * introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
- **pseudo-forecasting exercise**
 - evaluation sample is chosen *endogenously* (model suggested ex post)
 - so extend the sample.
 - discount the forecast error for 2008 since it affects comparisons (Figure 5).
Figure 5: Comparison of point forecasts at a 6-month horizon: linear DFM vs. full MS-DFM specification

6 One forecast is obtained at each step of the Gibbs Sampler and Figure 5 reports averages over all draws. The first 2000 draws of the Gibbs Sampler are discarded and the computation of the average forecasts is based on the next 5000 draws.
Conclusion

- Simple & adaptive model that captures interesting features of the data
- Estimation also seems quick here
- Needs to be explored more,
 - in particular since it might be simplified (Dev IC)
 - extended forecast exercise (more models, more variables?)