Short-Term Macroeconomic Forecasting and Turning-Point Detection after the Great Recession

Catherine DOZ, Laurent FERRARA & Pierre-Alain PIONNIER

10th French Econometrics Conference November 29, 2018

Discussion by G. Chevillon

1. The model

Empirical macro model for real variables y_{it} that combines

- Common I(1) latent factor c_t
 - with short-run dynamics, enters as distributed lag
 - innovations have 2 volatility regimes (high/low)
 - drift has 4 regimes: high/low in each for each volatility level
 - regimes are Markov-Switching

$$\phi_{c}\left(L\right)\Delta c_{t} = \mu_{S_{t},V_{t}} + \sqrt{1 + hV_{t}}\sigma_{c}\eta_{t}^{c}$$

ullet smooth idiosyncratic I(2) trend in GDP (slowly varying long term growth rate)

$$\Delta y_{it} = a_{it} + \gamma_i (L) \Delta c_t + u_{it}$$

 $\Delta a_{it} \sim iid, \quad u_{it} \sim AR$

• Novelty is the regimes in μ , V

2. Application

- 5-variables, mixed frequency (4 monthly variables GDP quarterly but disaggregated)
- Real-time vintages when available (post 1991 for GDP, post 1999 for monthly)
- Bayesian estimation
- Assumptions:
 - Identification: recession is more severe in high volatility regime (lower μ)
 - ▶ Innovations to u_{it} , Δa_{it} , Δc_t orthogonal
- Assessment:
 - One Information Criterion
 - ► Forecasting Exercise post 2007

Mixed Frequency: could improve the treatment
 e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - ▶ I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - * maybe too much variation and long term growth could be constant + one shift

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - \star maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are exogenous, but productivity mostly procyclical

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - \star maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are exogenous, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - \star maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are exogenous, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
- pseudo-forecasting exercise

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - \star maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are exogenous, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
- pseudo-forecasting exercise
 - evaluation sample is chosen endogenously (model suggested ex post)

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - \star maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are exogenous, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
- pseudo-forecasting exercise
 - evaluation sample is chosen endogenously (model suggested ex post)
 - so extend the sample.

- Mixed Frequency: could improve the treatment e.g., Blasques, Koopman, Mallee, Zhang (2016, JoE), Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data
- Real time data only in latter part: introduce serially correlated measurement noise when vintages are unobserved
- Why are recessions more severe under high volatility? how different from GARCH in mean?
- Model for real GDP:
 - I(2) here, although smooth estimate exhibits essentially cyclical variations except in 2007
 - \star maybe too much variation and long term growth could be constant + one shift
 - innovations to long term growth are exogenous, but productivity mostly procyclical
 - introduce endogeneity/correlation, e.g. Morley, Nelson, Zivot, (2003, REStat), BN vs UC decomposition
- pseudo-forecasting exercise
 - evaluation sample is chosen endogenously (model suggested ex post)
 - ▶ so extend the sample.
 - discount the forecast error for 2008 since it affects comparisons (Figure 5).

Figure 5: Comparison of point forecasts at a 6-month horizon: linear DFM vs. full MS-DFM specification⁶

⁶ One forecast is obtained at each step of the Gibbs Sampler and Figure 5 reports averages over all draws. The first 2000 draws of the Gibbs Sampler are discarded and the computation of the average forecasts is based on the next 5000 draws.

Conclusion

- Simple & adaptive model that captures interesting features of the data
- Estimation also seems quick here
- Needs to be explored more,
 - ▶ in particular since it might be simplified (Dev IC)
 - extended forecast exercise (more models, more variables?)