Why are inflation forecasts sticky?

F. BecR. BoucekkineC. JardetDiscussion by G. Chevillon (ESSEC Business School)

September 29, 2017

Banque de France

• Interesting paper that provides a model for inflation forecasting where forecasters may

- Interesting paper that provides a model for inflation forecasting where forecasters may
 - Choose to update their information set at a cost

- Interesting paper that provides a model for inflation forecasting where forecasters may
 - Choose to update their information set at a cost
 - e choose to update their forecasts at a cost

- Interesting paper that provides a model for inflation forecasting where forecasters may
 - Choose to update their information set at a cost
 - Choose to update their forecasts at a cost
- Uses a model based on (Alvarez et al., 2011, QJE) for firms' price setting.

- Interesting paper that provides a model for inflation forecasting where forecasters may
 - Choose to update their information set at a cost
 - Choose to update their forecasts at a cost
- Uses a model based on (Alvarez et al., 2011, QJE) for firms' price setting.
- Interesting empirical study of forecasters in France & Germany which

- Interesting paper that provides a model for inflation forecasting where forecasters may
 - Choose to update their information set at a cost
 - Choose to update their forecasts at a cost
- Uses a model based on (Alvarez et al., 2011, QJE) for firms' price setting.
- Interesting empirical study of forecasters in France & Germany which
 - show forecasting udpates rigidities

- Interesting paper that provides a model for inflation forecasting where forecasters may
 - Choose to update their information set at a cost
 - Choose to update their forecasts at a cost
- Uses a model based on (Alvarez et al., 2011, QJE) for firms' price setting.
- Interesting empirical study of forecasters in France & Germany which
 - show forecasting udpates rigidities
 - ▶ forecast updates propensity varies with inflation and horizon

• At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}

- At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h} , with h>0

- At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h} , with h > 0
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi_{f}^{*}(t) \equiv E_{t}\pi_{t_{0}+h} = E\left[\pi_{t_{0}+h} | \mathcal{I}_{t}\right]$$

- At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h} , with h > 0
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi_{f}^{*}(t) \equiv E_{t}\pi_{t_{0}+h} = E\left[\left.\pi_{t_{0}+h}\right|\mathcal{I}_{t}\right]$$

$$\pi_{f}(t) \equiv E_{t-\delta}\pi_{t_{0}+h} = E\left[\pi_{t_{0}+h} | \mathcal{I}_{t-\delta}\right]$$

- At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h} , with h > 0
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi_{f}^{*}(t) \equiv E_{t}\pi_{t_{0}+h} = E\left[\left.\pi_{t_{0}+h}\right|\mathcal{I}_{t}\right]$$

• The actual forecast does not use \mathcal{I}_t but $\mathcal{I}_{t-\delta}$ with $t_0 < t-\delta$

$$\pi_{f}(t) \equiv E_{t-\delta}\pi_{t_{0}+h} = E\left[\pi_{t_{0}+h} | \mathcal{I}_{t-\delta}\right]$$

• The paper studies whether $\delta > 0$ so the agent does not update her information set at t

- At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h} , with h > 0
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi_{f}^{*}(t) \equiv E_{t}\pi_{t_{0}+h} = E\left[\left.\pi_{t_{0}+h}\right|\mathcal{I}_{t}\right]$$

$$\pi_{f}(t) \equiv E_{t-\delta}\pi_{t_{0}+h} = E\left[\pi_{t_{0}+h} | \mathcal{I}_{t-\delta}\right]$$

- The paper studies whether $\delta > 0$ so the agent does not update her information set at t
- Consider the case where (Alvarez et al., 2011)

- At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h} , with h > 0
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi_{f}^{*}(t) \equiv E_{t}\pi_{t_{0}+h} = E\left[\left.\pi_{t_{0}+h}\right|\mathcal{I}_{t}\right]$$

$$\pi_{f}(t) \equiv E_{t-\delta}\pi_{t_{0}+h} = E\left[\pi_{t_{0}+h} | \mathcal{I}_{t-\delta}\right]$$

- The paper studies whether $\delta > 0$ so the agent does not update her information set at t
- Consider the case where (Alvarez et al., 2011)
 - acquiring infomation is costly, with cost θ

- At time t_0 , inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h} , with h > 0
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi_{f}^{*}(t) \equiv E_{t}\pi_{t_{0}+h} = E\left[\left.\pi_{t_{0}+h}\right|\mathcal{I}_{t}\right]$$

$$\pi_{f}(t) \equiv E_{t-\delta}\pi_{t_{0}+h} = E\left[\pi_{t_{0}+h} | \mathcal{I}_{t-\delta}\right]$$

- The paper studies whether $\delta>0$ so the agent does not update her information set at t
- Consider the case where (Alvarez et al., 2011)
 - acquiring infomation is costly, with cost θ
 - updating forecast is also costly, with cost ψ

• Assumption 1: Optimal forecast is a Brownian Motion

$$\begin{split} \lim_{dt \to 0} \left(E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+dt} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] \right) &\equiv d\pi_f^*\left(t \right) = \sigma dB\left(t \right) \\ E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+1} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] &= \Delta \pi_f^*\left(t+1 \right) = \sigma \epsilon_{t+1} \end{split}$$

• Assumption 1: Optimal forecast is a Brownian Motion

$$\begin{split} \lim_{dt \to 0} \left(E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+dt} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] \right) &\equiv d\pi_f^*\left(t \right) = \sigma dB\left(t \right) \\ E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+1} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] = \Delta \pi_f^*\left(t+1 \right) = \sigma \epsilon_{t+1} \end{split}$$

• Implicit assumption: inflation itself follows a Brownian motion

 $d\pi_{t} = \sigma dB(t)$ $\Delta \pi_{t+1} = \sigma \epsilon_{t+1}$

e.g. $\pi_{t} \sim AR(1)$ then $\Delta \pi_{f}^{*}(t_{0}+j) = \rho^{h-j}\epsilon_{t+j}$

• Assumption 1: Optimal forecast is a Brownian Motion

$$\lim_{dt\to 0} \left(E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+dt} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] \right) \equiv d\pi_f^*\left(t \right) = \sigma dB\left(t \right)$$
$$E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+1} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] = \Delta \pi_f^*\left(t+1 \right) = \sigma \epsilon_{t+1}$$

• Implicit assumption: inflation itself follows a Brownian motion

 $d\pi_{t} = \sigma dB(t)$ $\Delta \pi_{t+1} = \sigma \epsilon_{t+1}$

e.g. $\pi_t \sim AR(1)$ then $\Delta \pi_f^*(t_0 + j) = \rho^{h-j} \epsilon_{t+j}$

inflation is continuous: no jumps – supply side shocks (oil shocks)?

• Assumption 1: Optimal forecast is a Brownian Motion

$$\lim_{dt\to 0} \left(E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+dt} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] \right) \equiv d\pi_f^*\left(t \right) = \sigma dB\left(t \right)$$
$$E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_{t+1} \right] - E\left[\left. \pi_{t_0+h} \right| \mathcal{I}_t \right] = \Delta \pi_f^*\left(t+1 \right) = \sigma \epsilon_{t+1}$$

• Implicit assumption: inflation itself follows a Brownian motion

 $d\pi_{t} = \sigma dB(t)$ $\Delta \pi_{t+1} = \sigma \epsilon_{t+1}$

e.g. $\pi_t \sim AR(1)$ then $\Delta \pi_f^*(t_0+j) = \rho^{h-j} \epsilon_{t+j}$

- inflation is continuous: no jumps supply side shocks (oil shocks)?
- inflation is nonstationary without short-run dynamics (Stock & Watson, 2007)

• Dynamics of the "forecasting gap" $\tilde{\pi}_{f}\left(t\right) = \pi_{f}\left(t\right) - \pi_{f}^{*}\left(t\right)$

$$\begin{split} \tilde{\pi}_{f}(t) - \tilde{\pi}_{f}(t_{0}) &= \pi_{f}(t) - \pi_{f}(t_{0}) - (\pi_{f}^{*}(t) - \pi_{f}^{*}(t_{0})) \\ &= \pi_{f}(t) - \pi_{f}^{*}(t) = E_{t-\delta}\pi_{t_{0}+h} - E_{t}\pi_{t_{0}+h} \\ &= -\sigma \int_{t-\delta}^{t} dB(s) = -\sigma \left[B(t) - B(t-\delta)\right] \end{split}$$

hence conditionally on \mathcal{I}_{t_0} ,

$$\tilde{\pi}_{f}(t) = \tilde{\pi}_{f}(t_{0}) - \sigma \left[B(t) - B(t-\delta)\right] \sim N\left(\tilde{\pi}_{f}(t_{0}), \sigma^{2}\delta\right)$$

careful with the persistence induced by B(t).

• T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Solution (cost θ) yet not adjust the forecast (cost ψ)?

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Solution (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Solution (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - > you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T} . It seems an assumption instead (δ ?).

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Solution (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - > you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T} . It seems an assumption instead (δ ?).
 - so is the paper more about information or forecast rigidity?

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - > you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T} . It seems an assumption instead (δ ?).
 - so is the paper more about information or forecast rigidity?
- Bellman equation

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - > you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T} . It seems an assumption instead (δ ?).
 - so is the paper more about information or forecast rigidity?
- 8 Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - > you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T} . It seems an assumption instead (δ ?).
 - so is the paper more about information or forecast rigidity?
- Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors
 - when J = 0, the update (if any) is at T = h, so no min_T

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - > you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T} . It seems an assumption instead (δ ?).
 - so is the paper more about information or forecast rigidity?
- Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors
 - when J = 0, the update (if any) is at T = h, so no min_T
 - when J = 1, is θ paid at $t_0 + T$ and $t_0 + h$?

- T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \le h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ (h = 0 in section 3).
 - is the cost truly constant?
- Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - > you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T} . It seems an assumption instead (δ ?).
 - so is the paper more about information or forecast rigidity?
- Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors
 - when J = 0, the update (if any) is at T = h, so no min_T
 - when J = 1, is θ paid at $t_0 + T$ and $t_0 + h$?
 - (notice h does not appear)

• Forecast update proportion: you report for each horizon the proportion of forecasters that update between time T - h - 1 and T - h

- Forecast update proportion: you report for each horizon the proportion of forecasters that update between time T h 1 and T h
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.

- Forecast update proportion: you report for each horizon the proportion of forecasters that update between time T h 1 and T h
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - is it the same that always update? if so, is there a way to back out their costs?

- Forecast update proportion: you report for each horizon the proportion of forecasters that update between time T h 1 and T h
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - ▶ is it the same that always update? if so, is there a way to back out their costs?
- Information rigidity: should you not look at intra-month frequency? The cost to observe last month's inflation is zero but not the cost to update the forecast.

- Forecast update proportion: you report for each horizon the proportion of forecasters that update between time T h 1 and T h
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - ▶ is it the same that always update? if so, is there a way to back out their costs?
- Information rigidity: should you not look at intra-month frequency? The cost to observe last month's inflation is zero but not the cost to update the forecast.
- ψ/θ it would be nice to dig further (also the intercept c_i for the latent propensity to adjust λ^{*}_{i,t,h}).

- Forecast update proportion: you report for each horizon the proportion of forecasters that update between time T h 1 and T h
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - ▶ is it the same that always update? if so, is there a way to back out their costs?
- Information rigidity: should you not look at intra-month frequency? The cost to observe last month's inflation is zero but not the cost to update the forecast.
- ψ/θ it would be nice to dig further (also the intercept c_i for the latent propensity to adjust λ^{*}_{i,t,h}).
 - relate it to size of the firm?

- Forecast update proportion: you report for each horizon the proportion of forecasters that update between time T h 1 and T h
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - ▶ is it the same that always update? if so, is there a way to back out their costs?
- Information rigidity: should you not look at intra-month frequency? The cost to observe last month's inflation is zero but not the cost to update the forecast.
- ψ/θ it would be nice to dig further (also the intercept c_i for the latent propensity to adjust λ^{*}_{i,t,h}).
 - relate it to size of the firm?
- Notation: λ_{i,t,h} is an indicator for updates whereas λ (i, h) is unconditional probability.

A nice topic A nice idea A nice paper to read! Thanks!