Why are inflation forecasts sticky?

F. Bec R. Boucekkine C. Jardet

Discussion by G. Chevillon (ESSEC Business School)

September 29, 2017

Banque de France
Interesting paper that provides a model for inflation forecasting where forecasters may...
Interesting paper that provides a model for inflation forecasting where forecasters may

1. choose to update their information set at a cost
Overview

- Interesting paper that provides a model for inflation forecasting where forecasters may
 - choose to update their information set at a cost
 - choose to update their forecasts at a cost
Overview

- Interesting paper that provides a model for inflation forecasting where forecasters may
 1. choose to update their information set at a cost
 2. choose to update their forecasts at a cost
- Uses a model based on (Alvarez et al., 2011, QJE) for firms’ price setting.
Interesting paper that provides a model for inflation forecasting where forecasters may

1. choose to update their information set at a cost
2. choose to update their forecasts at a cost

Uses a model based on (Alvarez et al., 2011, QJE) for firms’ price setting.

Interesting empirical study of forecasters in France & Germany which

Overview
Overview

- Interesting paper that provides a model for inflation forecasting where forecasters may
 1. choose to update their information set at a cost
 2. choose to update their forecasts at a cost
- Uses a model based on (Alvarez et al., 2011, QJE) for firms’ price setting.
- Interesting empirical study of forecasters in France & Germany which
 - show forecasting updates rigidities
Interesting paper that provides a model for inflation forecasting where forecasters may

1. choose to update their information set at a cost
2. choose to update their forecasts at a cost

Uses a model based on (Alvarez et al., 2011, QJE) for firms’ price setting.

Interesting empirical study of forecasters in France & Germany which

- show forecasting updates rigidities
- forecast updates propensity varies with inflation and horizon
The Model

- At time t_0, inflation π_{t_0} is observed and belongs to information set I_{t_0}.
The Model

- At time t_0, inflation π_{t_0} is observed and belongs to information set I_{t_0}
- The agent aims to forecast π_{t_0+h}, with $h > 0$
The Model

- At time t_0, inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h}, with $h > 0$
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi^*_f(t) \equiv E_t \pi_{t_0+h} = E[\pi_{t_0+h} | \mathcal{I}_t]$$
The Model

- At time t_0, inflation π_{t_0} is observed and belongs to information set I_{t_0}
- The agent aims to forecast π_{t_0+h}, with $h > 0$
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi^*_f (t) \equiv E_t \pi_{t_0+h} = E [\pi_{t_0+h} | I_t]$$

- The actual forecast does not use I_t but $I_{t-\delta}$ with $t_0 < t - \delta$

$$\pi_f (t) \equiv E_{t-\delta} \pi_{t_0+h} = E [\pi_{t_0+h} | I_{t-\delta}]$$

Why are inflation forecasts sticky?
The Model

- At time t_0, inflation π_{t_0} is observed and belongs to information set I_{t_0}
- The agent aims to forecast π_{t_0+h}, with $h > 0$
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi^*_f(t) \equiv E_t \pi_{t_0+h} = E[\pi_{t_0+h} | I_t]$$

- The actual forecast does not use I_t but $I_{t-\delta}$ with $t_0 < t - \delta$

$$\pi_f(t) \equiv E_{t-\delta} \pi_{t_0+h} = E[\pi_{t_0+h} | I_{t-\delta}]$$

- The paper studies whether $\delta > 0$ so the agent does not update her information set at t
The Model

- At time t_0, inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h}, with $h > 0$
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is
 \[\pi_f^*(t) \equiv E_t \pi_{t_0+h} = E \left[\pi_{t_0+h} | \mathcal{I}_t \right] \]

- The actual forecast does not use \mathcal{I}_t but $\mathcal{I}_{t-\delta}$ with $t_0 < t - \delta$
 \[\pi_f(t) \equiv E_{t-\delta} \pi_{t_0+h} = E \left[\pi_{t_0+h} | \mathcal{I}_{t-\delta} \right] \]

- The paper studies whether $\delta > 0$ so the agent does not update her information set at t
- Consider the case where (Alvarez et al., 2011)
The Model

- At time t_0, inflation π_{t_0} is observed and belongs to information set \mathcal{I}_{t_0}
- The agent aims to forecast π_{t_0+h}, with $h > 0$
- The optimal forecast made at time $t \in (t_0, t_0 + h]$ is

$$\pi^*_f(t) \equiv E_t \pi_{t_0+h} = E[\pi_{t_0+h} | \mathcal{I}_t]$$

- The actual forecast does not use \mathcal{I}_t but $\mathcal{I}_{t-\delta}$ with $t_0 < t - \delta$

$$\pi_f(t) \equiv E_{t-\delta} \pi_{t_0+h} = E[\pi_{t_0+h} | \mathcal{I}_{t-\delta}]$$

- The paper studies whether $\delta > 0$ so the agent does not update her information set at t
- Consider the case where (Alvarez et al., 2011)
 - acquiring information is costly, with cost θ
The Model

- At time \(t_0 \), inflation \(\pi_{t_0} \) is observed and belongs to information set \(\mathcal{I}_{t_0} \)
- The agent aims to forecast \(\pi_{t_0+h} \), with \(h > 0 \)
- The optimal forecast made at time \(t \in (t_0, t_0 + h] \) is
 \[
 \pi_f^*(t) \equiv E_t \pi_{t_0+h} = E[\pi_{t_0+h} | \mathcal{I}_t]
 \]
- The actual forecast does not use \(\mathcal{I}_t \) but \(\mathcal{I}_{t-\delta} \) with \(t_0 < t - \delta \)
 \[
 \pi_f(t) \equiv E_{t-\delta} \pi_{t_0+h} = E[\pi_{t_0+h} | \mathcal{I}_{t-\delta}]
 \]
- The paper studies whether \(\delta > 0 \) so the agent does not update her information set at \(t \)
- Consider the case where (Alvarez et al., 2011)
 - acquiring information is costly, with cost \(\theta \)
 - updating forecast is also costly, with cost \(\psi \)
Assumptions

- **Assumption 1:** Optimal forecast is a Brownian Motion

\[
\lim_{dt \to 0} (E[\pi_{t0+h}\mid I_{t+dt}] - E[\pi_{t0+h}\mid I_t]) \equiv d\pi^*_f(t) = \sigma dB(t)
\]

\[
E[\pi_{t0+h}\mid I_{t+1}] - E[\pi_{t0+h}\mid I_t] = \Delta\pi^*_f(t+1) = \sigma \epsilon_{t+1}
\]
Assumptions

- **Assumption 1:** Optimal forecast is a Brownian Motion

\[
\lim_{dt \to 0} (E[\pi_{t_0+h} | I_{t+dt}] - E[\pi_{t_0+h} | I_t]) \equiv d\pi_f^*(t) = \sigma dB(t)
\]

\[
E[\pi_{t_0+h} | I_{t+1}] - E[\pi_{t_0+h} | I_t] = \Delta\pi_f^*(t+1) = \sigma\epsilon_{t+1}
\]

- **Implicit assumption:** inflation itself follows a Brownian motion

\[
d\pi_t = \sigma dB(t)
\]

\[
\Delta\pi_{t+1} = \sigma\epsilon_{t+1}
\]

- e.g. $\pi_t \sim AR(1)$ then $\Delta\pi_f^*(t_0 + j) = \rho^{h-j}\epsilon_{t+j}$

▶ inflation is continuous: no jumps – supply side shocks (oil shocks)?

▶ inflation is nonstationary without short-run dynamics (Stock & Watson, 2007)
Assumptions

- **Assumption 1**: Optimal forecast is a Brownian Motion

\[
\lim_{dt \to 0} \left(E \left[\pi_{t_0+h} | I_{t+dt} \right] - E \left[\pi_{t_0+h} | I_{t} \right] \right) \equiv d\pi^*_f(t) = \sigma dB(t)
\]

\[
E \left[\pi_{t_0+h} | I_{t+1} \right] - E \left[\pi_{t_0+h} | I_{t} \right] = \Delta \pi^*_f(t+1) = \sigma \epsilon_{t+1}
\]

- **Implicit assumption**: inflation itself follows a Brownian motion

\[
d\pi_t = \sigma dB(t)
\]

\[
\Delta \pi_{t+1} = \sigma \epsilon_{t+1}
\]

e.g. \(\pi_t \sim AR(1) \) then \(\Delta \pi^*_f(t_0+j) = \rho^{h-j} \epsilon_{t+j} \)

- inflation is continuous: no jumps – supply side shocks (oil shocks)?
Assumptions

- **Assumption 1**: Optimal forecast is a Brownian Motion

\[
\lim_{dt \to 0} \left(E \left[\pi_{t_0+h} \mid \mathcal{I}_{t+dt} \right] - E \left[\pi_{t_0+h} \mid \mathcal{I}_t \right] \right) \equiv d\pi_f^*(t) = \sigma dB(t)
\]

\[
E \left[\pi_{t_0+h} \mid \mathcal{I}_{t+1} \right] - E \left[\pi_{t_0+h} \mid \mathcal{I}_t \right] = \Delta \pi_f^*(t+1) = \sigma \epsilon_{t+1}
\]

- **Implicit assumption**: inflation itself follows a Brownian motion

\[
d\pi_t = \sigma dB(t)
\]

\[
\Delta \pi_{t+1} = \sigma \epsilon_{t+1}
\]

- e.g. \(\pi_t \sim AR(1) \) then \(\Delta \pi_f^*(t_0 + j) = \rho^{h-j} \epsilon_{t+j} \)

 - inflation is continuous: no jumps – supply side shocks (oil shocks)?
 - inflation is nonstationary without short-run dynamics (Stock & Watson, 2007)
Dynamics of the "forecasting gap" \[\tilde{\pi}_f(t) = \pi_f(t) - \pi_f^*(t) \]

\[
\tilde{\pi}_f(t) - \tilde{\pi}_f(t_0) = \pi_f(t) - \pi_f(t_0) - (\pi_f^*(t) - \pi_f^*(t_0)) \\
= \pi_f(t) - \pi_f^*(t) = E_{t-\delta}\pi_{t_0+h} - E_t\pi_{t_0+h} \\
= -\sigma \int_{t-\delta}^t dB(s) = -\sigma [B(t) - B(t - \delta)]
\]

hence conditionally on \(I_{t_0} \),

\[
\tilde{\pi}_f(t) = \tilde{\pi}_f(t_0) - \sigma [B(t) - B(t - \delta)] \sim N(\tilde{\pi}_f(t_0), \sigma^2 \delta)
\]

careful with the persistence induced by \(B(t) \).
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
Other Assumptions

T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.

- Why? one does not need to update information to nowcast $t_0 + h$.

Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ) in the model, only ψ bites.

You claim to be a result that if there is an adjustment at T, then it is a full adjustment to $t_0 + T$. It seems an assumption instead (δ?).

So is the paper more about information or forecast rigidity?

Bellman equation

Loss function is Average discounted Mean Square Forecast errors

When $J = 0$, the update (if any) is at $T = h$, so no min

When $J = 1$, is θ paid at $t_0 + T$ and $t_0 + h$? (notice h does not appear)
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.

 ▶ Why? one does not need to update information to nowcast $t_0 + h$.
 ▶ at time $t_0 + h$ the agent saves θ by not updating information.
 ▶ Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
 ▶ is the cost truly constant?
Other Assumptions

1. \(T \) is the time elapsed until next observation \(t_0 + T \) is obtained. You impose \(T \leq h \).
 - Why? one does not need to update information to nowcast \(t_0 + h \).
 - at time \(t_0 + h \) the agent saves \(\theta \) by not updating information.
 - Empirical results show not everyone updates at \(t_0 + h \) (\(h = 0 \) in section 3).
 - is the cost truly constant?

2. Is there a way to **update** information (cost \(\theta \)) **yet not adjust** the forecast (cost \(\psi \)?)
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
 - is the cost truly constant?

2. Is there a way to **update** information (cost θ) yet **not adjust** the forecast (cost ψ)?
 - in the model, only ψ bites.
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
 - is the cost truly constant?

2. Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - you claim to be a result that if there is an adjustment at T, then it is a full adjustment to $\mathcal{I}_{t_0 + T}$. It seems an assumption instead (δ?).
Other Assumptions

1. \(T \) is the time elapsed until next observation \(t_0 + T \) is obtained. You impose \(T \leq h \).

 ▶ Why? one does not need to update information to nowcast \(t_0 + h \).
 ▶ at time \(t_0 + h \) the agent saves \(\theta \) by not updating information.
 ▶ Empirical results show not everyone updates at \(t_0 + h \) \((h = 0 \text{ in section 3})\).
 ▶ is the cost truly constant?

2. Is there a way to update information (cost \(\theta \)) yet not adjust the forecast (cost \(\psi \))?

 ▶ in the model, only \(\psi \) bites.
 ▶ you claim to be a result that if there is an adjustment at \(T \), then it is a full adjustment to \(I_{t_0+T} \). It seems an assumption instead (\(\delta \)).
 ▶ so is the paper more about information or forecast rigidity?
Other Assumptions

1. \(T \) is the time elapsed until next observation \(t_0 + T \) is obtained. You impose \(T \leq h \).
 - Why? one does not need to update information to nowcast \(t_0 + h \).
 - at time \(t_0 + h \) the agent saves \(\theta \) by not updating information.
 - Empirical results show not everyone updates at \(t_0 + h \) (\(h = 0 \) in section 3).
 - is the cost truly constant?

2. Is there a way to update information (cost \(\theta \)) yet not adjust the forecast (cost \(\psi \))?
 - in the model, only \(\psi \) bites.
 - you claim to be a result that if there is an adjustment at \(T \), then it is a full adjustment to \(\mathcal{I}_{t_0+T} \). It seems an assumption instead (\(\delta ? \)).
 - so is the paper more about information or forecast rigidity?

3. Bellman equation
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
 - is the cost truly constant?

2. Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T}. It seems an assumption instead (δ?).
 - so is the paper more about information or forecast rigidity?

3. Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
 - is the cost truly constant?

2. Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - you claim to be a result that if there is an adjustment at T, then it is a full adjustment to $I_{t_0 + T}$. It seems an assumption instead (δ?).
 - so is the paper more about information or forecast rigidity?

3. Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors
 - when $J = 0$, the update (if any) is at $T = h$, so no min$_T$
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
 - is the cost truly constant?

2. Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - you claim to be a result that if there is an adjustment at T, then it is a full adjustment to \mathcal{I}_{t_0+T}. It seems an assumption instead (δ?).
 - so is the paper more about information or forecast rigidity?

3. Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors
 - when $J = 0$, the update (if any) is at $T = h$, so no min T
 - when $J = 1$, is θ paid at $t_0 + T$ and $t_0 + h$?
Other Assumptions

1. T is the time elapsed until next observation $t_0 + T$ is obtained. You impose $T \leq h$.
 - Why? one does not need to update information to nowcast $t_0 + h$.
 - at time $t_0 + h$ the agent saves θ by not updating information.
 - Empirical results show not everyone updates at $t_0 + h$ ($h = 0$ in section 3).
 - is the cost truly constant?

2. Is there a way to update information (cost θ) yet not adjust the forecast (cost ψ)?
 - in the model, only ψ bites.
 - you claim to be a result that if there is an adjustment at T, then it is a full adjustment to $I_{t_0 + T}$. It seems an assumption instead (δ?).
 - so is the paper more about information or forecast rigidity?

3. Bellman equation
 - Loss function is Average discounted Mean Square Forecast errors
 - when $J = 0$, the update (if any) is at $T = h$, so no min T
 - when $J = 1$, is θ paid at $t_0 + T$ and $t_0 + h$?
 - (notice h does not appear)
Empirics

1. **Forecast update proportion**: you report for each horizon the proportion of forecasters that update between time $T - h - 1$ and $T - h$.
Empirics

1. **Forecast update proportion:** you report for each horizon the proportion of forecasters that update between time $T - h - 1$ and $T - h$
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
Empirics

1. *Forecast update proportion:* you report for each horizon the proportion of forecasters that update between time $T - h - 1$ and $T - h$
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - is it the same that always update? if so, is there a way to back out their costs?
Empirics

1. **Forecast update proportion:** you report for each horizon the proportion of forecasters that update between time $T - h - 1$ and $T - h$
 ▶ for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 ▶ is it the same that always update? if so, is there a way to back out their costs?

2. **Information rigidity:** should you not look at intra-month frequency? The cost to observe last month’s inflation is zero but not the cost to update the forecast.
Empirics

1. **Forecast update proportion:** you report for each horizon the proportion of forecasters that update between time $T - h - 1$ and $T - h$
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - is it the same that always update? if so, is there a way to back out their costs?

2. **Information rigidity:** should you not look at intra-month frequency? The cost to observe last month’s inflation is zero but not the cost to update the forecast.

3. **ψ / θ** it would be nice to dig further (also the intercept c_i for the latent propensity to adjust λ^*_i,t,h).
Empirics

1. **Forecast update proportion**: you report for each horizon the proportion of forecasters that update between time $T - h - 1$ and $T - h$
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - is it the same that always update? if so, is there a way to back out their costs?

2. **Information rigidity**: should you not look at intra-month frequency? The cost to observe last month’s inflation is zero but not the cost to update the forecast.

3. **ψ / θ**: it would be nice to dig further (also the intercept c_i for the latent propensity to adjust $\lambda^*_{i,t,h}$).
 - relate it to size of the firm?
Empirics

1. **Forecast update proportion**: you report for each horizon the proportion of forecasters that update between time $T - h - 1$ and $T - h$
 - for comparability with the literature, it would be nice also to report the average time between two forecast updates.
 - is it the same that always update? if so, is there a way to back out their costs?

2. **Information rigidity**: should you not look at intra-month frequency? The cost to observe last month’s inflation is zero but not the cost to update the forecast.

3. **ψ/θ**: it would be nice to dig further (also the intercept c_i for the latent propensity to adjust λ^*_i,t,h).
 - relate it to size of the firm?

4. **Notation**: λ_i,t,h is an indicator for updates whereas $\lambda(i,h)$ is unconditional probability.
A nice topic
A nice idea
A nice paper to read!
Thanks!